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TECENICAL NOTE NO. 1096

ON SUPERSONIC AND FPARTIALLY SUPERSONIC FLOWS

By Stefan Bergman

SUMMARY

The present paper is one of a series of papers to ex-
tend the analytical methods used so successfully in the
theory of an incompressibls fluid to the case of a compress-
ible fluid

A stream function of an irrotational flow of an incom-
pressible fluld satisfiegs the laplace equation and, con-
versely, the 1imaginary part of an arbitrary analytic func-
tlon of a complex variable can be considered as the stream
function of a possible flow; nmany results of the highly de-

veloped theory of anelytic functions can thus be interpret-

ed as theorems on the motion of an incompressible fluid.

By using the hodograph method (introduced in the theory
of compressible fluids by Chaplygin) a formule had previous-

ly been obtained for the stream function of a possible sub-

sonic compressible flow in terms of an arbitrary analytic
function of a complex variable; procedures for using some
methods and techniques of the theory of analytic functions
in the theory of subsonic flows have likewise been indicated
and, as & conseauence, new flow patterns have been obtained.
These flow patterns include examples of flows around symmet-
ric and ncnsymmetric obstacles, under the assumption of the
true pressure~density relation, p=opK, o and k Tbeilng '
constantsg. .

In this paper the foregoing results are improved and
completed. A formuls (analogous to that for subsonic flows)
is derived, which represents a stream function of a possible
supersonic flow 1In terms of two arbitrary differentiable

functions of one real variable. Finally, some instances are

discussed in which flow pattern defined in two neighboring
parts of the plane can be combined into one flow pattern de-
fined in the combined domain. This last method leads, in
some instances, to partially supersonic flows.
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INTRODUOTION

The development of research in compressible fluid the- -
ory has made it desirable to have adequate mathematical
tools for dealing with problems of compressible flows, One N
of the reasons for the success of mathematical methods in
the study of two-dimemnsional irrotational steady flows of
an incompressible fluid is based on the fact that it is
possible to represent the stream function of such a flow asg -
the imaginary part of an analytic function of a complex
variable. As o consequence, various results in the highly
developed theory of analytic functions can be applied to
yield solutions of problems- in hydrecdynamics.

In previous publications of the author (references 1
through 5), this approach has been generalized %o include .
the case of compressible fluid flows: this was accomplished
by representing the stream function of a possible flow of a s
compressible fluid in terms of two arbitrary functions of
one variable,. In that part of the flow where the character _
of the flow is subsonic, one of these functions is an ana- «
lytic function of & complex variable, the other, its conju-
gate. In tke region of the flow in which ite character is _
that of a supersonic flow, each of these two functions 1s a
different function of one real wvariable,

The development of this approach raises several complex _
and fairly difficult questions; the purpose cf this report '
will be to discuss, in some detail, the problems entailed by
these meithods,

In order to facilitate reading, in sections I and II
the general idea of thig method of approach will be summa-
rized.

This investigation, carried out et Brown University,
was sponsored by and conducted with the financial assistance
of the National Advisory Committee for Aeronautics.

The guthor would like to express his sincere apprecia- -
tion for the assistance and advice he received from Mr,
Leonard CGreenstone and to thank Mr. Herman Chernoff for hils
help with section III and Mr, Bernard Epstein for his help .
with section IV, .
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NOTATION

In dealing with differential equations the following
notation 1s often used:

_%u 1 /3u du = %u _ 1 (%u , ; cu
38w 1 /3% Bzu\z\l

- = [ —— — - 3 = -+ . = -1

TGk g2/ Tgh pE Rt Ay, = oy

o 1 SR
a = [@a,° - g( k - 1)g®] ; speed of sound

8¢ speed of sound at o stagnation point o
an coefficinRts in the series expansion of T in powers
“; also used in the sense of equation (72)

coefficients in the series expansion of T % in

" powers of e?%; aleo used in the sense of equa-
tion (72)
Cn (See equations (146}, (148).)
an‘®), a2®), 4, ), 4,)  (See equations (86), (87).)
e base of Naperian logarithms _
exp (x) = &%

f, & arbitrary analytic functions, in the subsonic case;
arbltrery twice differentiable functlons of one
real variable in the supersonic case

dgtoj (Z)

a2z az

gled (z) = g(2)
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("] (2) nth 1terated integral of g(2)

.-

k - 1N\ 1

h = e ; h == f k=1.4

<k.l-l> ;\/G— or

k constant in the equetion of state 7p = cpk; the

ratio of specific heats at constant pressure to
constant volume; k = 1.4 for air

2
- P YL
1(H) = (p(H) > (1 - M2(H))

P presgure
Py pressure at stagnation point
magnitude of the velocilty wvector

q
——
a

= q_e16 velocity vector

schlicht = univalent

g =1 - T
Sn (See equation (87).)
a, v Cartesian components of the velocity vector
X, ¥ Cartesian components in the physical plane
A constant in the Von XKdrmédn-Tsiecn equation of state

g

P = A+ —

o)

B =,/M° -1 for M>1
(1)
B (A) = - Q (A d Ay
oy

A
E(n+1)(A) = /(EAA(n)(AI) +Q(A1) E(n)(Al))d'Al
.‘0
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€<n)(A) (See equations (159).)
en)(a) = =, (a%)

(r+ 1)M*
' 3
64 (1 - M®)

[- {8k ~1) M* - 4(3~ 2k) ¥® + 16 ]

F=— (N, +¥°) =
¢
for k=1,4 (See equation (19).)

F, = leﬂ'i-gii (See eguation (45).)
5 :

O A

o polynomial epproximation of the mth degree in ea%
to F
Fy . (See equation (158).)
Z 1
£+ - 2(k~1)
H = exp (-/P Nd(§+-§)>= 1 1 :
' 1,4
S e 1-m2) "l R - 1)

in this sense H is used only in the series expansion:
of V¥ (3ee equation (17).)

q .
/f e dq; in this sense H %s used only as an indepénd-

m
il

q
ent variable (See equation (32).)

ah
H, = exp(— /P ﬁl(Al)dlh>

Im imaginary part of
DE

L(E) = (¥® - 1) —2—  (see 1(H).)
p (H)

(2n)!
L(n)(zk) =-—ﬁ—l— H(ZA)Q(n)(ZA)
2 n!

[
-
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( ] (2n)!
Ly ) (2n) = SRl H(B?\)Q,m(n>(27\)
M local Mach number; M = q/a
My, Mg, M, M, (See equation (57).)
4
N oa o (E+1) M .
8 (1 - Ma) /3
4
(x+ 1) M
N, = = == .
1 8 (MB— l)s/a
A
Q(l)(k) = ~4/[‘ FdA
) > )
RO R / @r® o) oy el unan,
2n+ 1

OO

(See equation (107), and appandix II,)

Qm(n) Q(n) computed employing ¥, instead of F

Re real part of

_1-M ° R
P 38 p dq \p

-
4

G/

=

t

o

e

U, U,, Uy, U*¥ (See equations (84), (85), ff., (173),

v(a, ©) H, 1w (A, 6) (See equation (50)) V = V,+Vy

e ) = Yy 3 Bl .

6
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co

Vo(E, n) = g(n)+ YE(n)(A) g 2l(a)

n 1

V¥, V,*, Vy* (8ee footnote, ». 24.)

w(t, n) (See equation (158).)

X (See equation {200), f£f.)
Z = A + 18
B=1/k-1; B = 5/2 for air
' A 1/3
L= (-ster ) z) o
n=A-0; n*=mn-a/2 (See eguation (155).)

6 the angle the velocity vector 8§ makes with some
fixed direction; q = qeie; ‘also @ = %(E - n)
(See equation (46).) '

1 1-7 1 R™1 &+ T

A== l1le + = log ——r—— (See equation (20).)
2 [ Sl + 1 1w 8yt g J 4

E= A+ 0

E* = £t -~ a/2 (See equation (155).) R

o} denslity
Po density at a stagnation point; equation (11)
g =T - 0.15, equation (74); also & constant in the

preséure—density relation p = cpk

- (k - 1) q?

)
2ag
I -1
T = gq_ for air, assuming ag = 1
W stream function ' . -
o= Hy
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Ve =H, V*

2 2
0 “p - 4 ( 3%
ax= oz 0%

H
A(H) =/ JL(H) 4F = i—'tan-l(-hB) - tan ® B

A Laplace operator: Agp =

T (V)-= Vg + Q(E + n) V=0

s

(ﬁ) an analytic function of & complex variable satisfyling
certain conditions

Remark: Observe that quite frequently functions will be con-
gsidered in different pilenes although the notatlion will not,
in general, indicate this. Thus, given f£(x, y), let

x(x!, x®)

x =
vy = ylxl, x2), 3(xi, x2) 4 g

d(x, y)

to obtain f(x(x?, x2), y(x*, x®)) = £1(x?, x®)., The super-

script will, in general, be omitted and only f£(x?, y=)
written, since the meaning will be clear from the context.

In the following, the fluid flow to be considered will
be supposed to be that of a two-dimensional irrotational
steady flow of an inviscid, compressible fluid.

The assumption of the law of the conservation of matter
leads to the equation of continuity:

0 ) )
g;(pu) +‘g;(PV) =0 (1)

where p 1is the density, (u,v) the Oartesian components of
the velocity vector, and (x,y) the Cartesian coordinates in

the plane of flow,.

This equation implies that the differential expression
pudy - pvdx 1ig a complete differential -~ that 1s, that it

8
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is the differential of some function, say V(x,y), the so-
called "gstream function of the flow.!

Thus
d¥ = pudy - pvdx (2)

which clearly implies the relations

/W _ . d_
= ov, ay-.pu. (3)

The assumption that the flow is irrotational mey be ex-
pressed mathematleally by the equation

ou dv
ouw _ ov _ 4
5y ~ 5% ) (4)

This implies that wudx + vdy 18 the differential of some
function, say, @, the so~called "potential function of
the flow." ‘Thus,

dp = udx + vdy (5)
gso that
el = u, QQ-= v (6)
dx Ay

and q, the magnitude of the welocity vector, is glven by

q = ﬂg—%)g + (%E:})a (7)

Equations (3) and (5) imply the system of equations:

o _ 13 dm_ 12y (8)
dx p oy’ 3y p Ox

relating the stream function and potential function of a
flow descridbed above.
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If 1t be assumed that ths fluid motion represents an
adiabatic process, then the equation of state assumes the .

form:
P =oof + A (9)
are constants (k = 1.4 for air), and

where A, o and k
P 1s.the pressurs.

Ag the esquation of state expresses the pressure as a
function of the density alone, the first integral of
Newton's law of motion for a gas may be easily obtalned In
the form of Bernoulli's equation:

&
- &
Lgs + P =0 (10)
2 ) p(p)
P .
0
The pressure, p, may be eliminatéd with the aid of some com-
putation (which is omitted here) by combining (9) and (10 .-
to obtaln -
1 - 1
k-1 g7 Tk- k-1 d3p\ 3w )] k-1
P = P, n_%klapo[lrm{<£>+ ._?_.)-} kl(ll)
2 &, . 2ag® \M\dx dy /.

Here Por 8, are the density and the speed of sound, re-

spectively, at a stagnation point.

If p 1is eliminated from equation (8) (giving p its

value in gllg and substituting for q the expression in
equation (7)), 4%t may be seen that (8) represents a systenm
of two nonlinear partial differential egquations for p and

\ll.

In the case of an incompressidle fluid flew, where o}
is constant, equation (8) represents a system of two linear s
partial differential equations, and it is these equations
which provide the means whereby hydrodynamics may be studied
as an application of the theory of analytic funcitions of a
complex wvuriable,

In order, in the case of a compressible fluid, to ob- .
taln a system of linear equations, 1t is.necessary to replace
this approach by an alternate and more cémplex one, namely,

10



NACA TN No. 1096

the "hodograph method," according.to which & and VY are
.considered as function® not of the Cartesian coordinates of
the plane of flow, (x,y), but of q and 6, where gqel€

is the velocity vector. Function g denotes the spesd and
§ the angle which the velocity vector forms with some fixed
direction.

Consider a steady two-dimensional flow pattern; then at
every point (X,Y) there ig a certain veloclty vector qeie.
Consequently, to every point (x,y) of the flow pattern, it
is possible to associate the palr of quantities, q and 8.
If q and - are now considered as the polar coordinates
of some new plane, the "hodugraph plane," to a streamline
of the given flow pattern, there will correspond a line in
this plane. The image of the flow patterns so obtained is
called the hodograph of the flow pattern.

valocity

////”7Veotor

Figure 2.

In addition to having the image of the flow in the
hodograph plane, it is frequently useful to have the image
of the flow in the "logarithmic plane," that is, the planse
the Cartesian coordinates of which are log q &anhd 6. Ob-
viously, 1t is possible to consider the stiream and Poten-
tial functions ag defined in the hodograph or logarithmic

planes, r
. Te
That is, if (x,y) are
given as functions of ¢
and 8, {
- N\ log a
X=X1(q_,6) -
¥y = v1(q,8)
or of log q and 8

11
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x = x5 (log q,9)

i

y = vya(log q,8)

then ¢,V evidently may be expressed as a function of these
variables

olx1(a,6),7y1(a,6)] =l xz(log a,6),y2(log q,6)]

Yl =xy(a,6),v1(a,8)]

'm(V.&)-

v (x,y) V[ %z (log a4, 8),72(log q,6) ]

[
[}

On the other hand, if the potential and stream functions are
given in the hodograph or logarithmic planes, that is, if

Cp:cpl(Qve)o W=‘lf1(q,e)
end

CP = CPa(lOg ‘q’e)’ \U =.Wg(10g qq Q)

respectively, then 1t 19 not difficult to determine the
corresponding streamlines ir the physical plane (the actual
plane of the flow).

In the case of an incompressible fluid flow, the po-
tentlal and stream functions considered in the logerithmic
plene, that is, as a function of log q and 6, satisfy
a system of partial differential equations which has exact-
ly the same form us equations (8). Thus,

[&

3 .2y _ e _ 1
p

a,
08 pd (log q)’ 0 log q b 6

(s 14

(p being constant).

Therefore, except in problems of a special character,
it is more convenlent, in the case of an incompressible
fluid flow, to operate in the physical plane (the (x,y)-
plane).

The situation changes completely in the case of com-
pressible flows, for, as has been mentioned, o . and \j
considered as functions of x ‘and y satisfy a system of

1z
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nonlinear partial differential equations. If, however, %
and  are considered as functions, not of x and y, but
of log'q .and 8, +then, as Mclenbroek and Chaplygln have .
gshown, ¢ and . satisfy a system of linegr partial 4iffer-
ential equations: namely, ’ _ .

d3p _ a3 )
o8 p dq :
3 (12)
dp 1 - M2 3y
3¢ T pq d8
q | Paq J

where p 1is given by (11). (See reference 6,)

If o is eliminaeted, then the following partial d4if-

ferential equation of second order i1s obtained for i

.32
s (V) s L= M2 2%% a3 g3V _ - (18)
° p? 2362 SE(P g

In the case of an incompressible fluid, S,(¥) becomes for
an appropriate choice of units . ) et

=1 Y- - :
9 :'+ AR = = 0 (14)
3 8 d3(1og q)

and, hence, the general representation ¢f a posslble stream
function in terms of an arbitrary analytic function of one
complex variable may be obtained: namely,

V(log q, 8 = Imfg(t)] , = 6+ 1logq ~ (15)
where ¢ 1s an arbitrary analytic functionof the complex
variable ﬁ. .

In previous publications of .the author, a generaliza-
tion of (15) for the case of =a compressible fluid has been
provided. The formulas of this generalization are the meansd
by which various flow patterns of a compressible fluid may
be obtained., (See sauations (24), (25), . . ..

Naturally, a procedﬁre for obtaining flow patterns 1s

13
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only the first step in the development of the theory, since
in most cases it is not "some" flow which is required, dut,
rather, the flow around a glven profile which must be known
(as well as the laws which govern the motion of a compress-
ivle fluid). However, it may be noted that, in the subsonic
case, at least, an approximate solution of the problem may
be obtained if, for the function g in equation (24), the
function which represents the complex potential in the log-
arithmic plane of the corresponding Incompressible fluid
flow 15 substituted.

In the following, it will be convenient to coneider the

subsonic and supersonic cases separately. This will be done
in sectiong II and III, respectively.

IT — THE SUBSONIC CASE

As was indicated in reference3 the function Y* (which,
when multiplied by

_ r 1 ~—B/4
H = Tlfajlau- (1 - 72y |
"5 J
~1/4af 1 —6/4
= {1 — Ma 1 +-‘Ma
( ) L 5 J (18)
where
72 = 1 - MR (17)
vields the stream function ﬂl), congidered as a function of
A and © satisfies the equation:
“%E+ Py = 0 Z = A+ 16 (18)
where
F = -0.120° + 0,51 4 =81 _ 0.63 , 0.45 (19)
p@ m4 m®

and T and AN are connected by the relation

1k
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110 (52 >+ LB 1og (&_i_T_ (20)
1+'.B 2 4\/‘6‘— T
Bxpressions (16), (19), (20) have been evaluated for k =
l.4, In references 3 and 5 they are given for an arbltrary
k. : .

If F 4is identically zero, then (18) becomes the
Laplace equation

1] 3%y* |, 0=y
Z[B)\z + Y }= 0 (21_)._.
and
Y* = Im[g{2)], Z = A+ 186 (22)

is the "general golutlion" of this equation; here g 1is an
arbitrary analytic function of the complex variadble 2,

Remark: For k = ~1, T vanishes = that is in thi? case
the "compressibility equatlon," in the (%,e ~plane (the so-

catled "pseudo-logarithmic! plane) becomes the Laplace
equation,

The Von Kirmén—-Tsien method of obtaining compressibdle
flows around closed bodies is based on this assumption (i1.e.,
that the pressure-density relation is of the form

A+ <
P:
o

ingtead of the adiabatic relation (9) employed by the au-
thor). The stream functions in the (A,B)-plane are then
harmonic funections, (See references 4 and 5.)

As was proved in reference 2, the representation (22)
of the "general solution®" in terms of an arbitrary analytis
funetion of a complex varieble can be extended to the case
where F 1ig not identically zero, but is any function
gsatisfying certain conditions. -

Under the assumption that the function F* and 1ts
derivatl7res satisfy the inequalities

15
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[ e(E + 1)1

‘ K — iz 0,1,2,. . . (28)

A< O and X

where ¢ 18 a fixed constant, it was shown in reference
that the expression :

Iml'n(gx)fg(z) + S? (zn) 2() (any 2] (z)i\ (24)°
L L - 2 nI J
o=
where
el°1(z) = &(2) )
7, (25)
EEDJ(Z) = /f gtéﬁlj (Zl)dzl
e .
n=1,2,8,.. .
(z an arbitrary analytic funétion of the complex varlable
§ represents a solution of

U —+ *J = 0
727

The difficulty which arises in the further development
of this epproach ariges from the fact that the function F
which actually appears in (18) is a rather complicated func-
tion of A, and 1% is not clear offhand whether or not it
satisfies the inequalities (23). In order to overcome _
thig difficulty, two possible alternatives may be employad:

" 1. In reference 5 it was proved that in the domain
A< 0 (which is the domain under consideration in the sub-
sonic case) F, given by (19), may be represented in the
form

The QTE) depend only on the function F* and there-
fore being independent of the particular functiom g(Z) can
be computed and tabulated once and for all. (See appendixes
I and II,

16
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= A
T - ZZ Cpe (26)
n=3 "

(See table 2.)

If, now, the infinite sum (2€) is replaced by the
finite sum

m
Fp = ;7 C,e3nA (27)
n=a

(or approximated by some other polynomial in eak), then,

as may be shown rather easily (sees reference 3), for every

finlte m, Fp and ite derivatives satisfy the inequalities
(23); and hence the representation (24) may be employsed to

yield solutions of (18) (¥ replaced by Fy).

As has been pointed out in previous publications of the
author, the solutions of (18), when F is replaced by Fp,
will then assume the following form L

. = (2n)! o
¥) = In {H(ZA) [g(Z) N Z —2—2—% q, (7 (2n)g [ (Z)J} (28)

n=1
the subseript m in. Qm(n) indicating the dependence of

Q(n) on the m chosen, so that it seeme likely that the
actual solution of (18) may be written in the form

U* = 1im w; (29)
m->> @

and this was shown to be the case. (See referencs 3.)

The disadvantage of this approach lies in the fact that
for values of M cleose to M = 1 (corresponding %o values
of T near T = 0), 1%t is necessary to use a larg ¢ number
of terms of (26) in order to obtain a good approximation for
F; that is, m of (27) must be chosen rather large,

17
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In appendix I of reference 5, the developments of T
and T in powers of a2 were given, By substituting
these expressions for T and % 4n (19), the desired

2A

expansion of F 4in powers of @ was obtained. In this
10 _
appendix the wvalues of T,,, that is, zz aneank, where

n=o

(78

anean% are compared with the exact values of T,

0
and the difficulty mentioned above for high Mach numbers may

then be observed.
n
In this case the determination of the Qm( )

involve any theoretical difficulitles, but for large =m,
does entail difficulties of a computationsl nature.

=)
il

does not

Remark: Note that in the nelghborheod of T = O, that 1s,
M=1, T and 1/T .can be developed in a series of

1/3 .
{ = (~3,67) .1 If these series are substituted in (19)

for T and 1/7,. a development of F 1in a power series of
¢, which holds for M < 1, &g obtained in the neighborhood

of M = 1.

2., The second alternative consists in proving that the
function F as defined by (19) does satisfy the inequali-
ties (23), and therefore by the theorem stated in appendix I,
the series (24) will converge.

Equations (96) de*ermine esach Q(nj up to & conatant;
this constant can be specified by the requirement that for
some fixed value, say g = q, (and, therefore, for some A\,

say, XA = 7)), Q(n) venishes. If the same q, 1is chosen

for all n, n=11,2, . . ,, then the physical meaning of
such a choice is the following:

Consider a flow, the speed of which st every point is
nearly d,; then, in the pseudo-logarithmic (the (X\,8)-
plane), the flow resegbles that of a distorted flow of an
incompressible f£fluid,

1For general k, ¢{ = (-3(k+l)(k/2))1/3. This .choice
yieldas T =""'f +-, ., .

“Note that 4n the incompressible case, X and log 4
are l1dentical,

1g
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The most natural choice, then, to make for q,, would
bel 4, = 03 that is, assume all Q\% vanish for N = o3,

In appendix I, proof is given that the sories (24) con-
verges, under rather gensral conditions on F which include
in particular the case defined by (19).

For values of M c¢lese 0 1, many terms of (24) have
to be taken into account in crder to obtain good approxi-
mations to the sitream function; consequently, it is neces-
sary to have as many of the coefficlents

o 1
n(n) o L2300t 50y (2 (30)
20n!
of }’ o
= md Yy 1Rl (z) (1)
kﬂ=°
as possible. In appendix II, expressions for Q(n)(zk).
"n =1,2, ., . . ,8 are derived, the first four of which can
be expressed in closed form as a function of T, while in

the expression for the last four, an Integral appears; how-
ever, the integrand in this case can be writiten in closed
form, s0 that at least numerical computation of the integral
will not prove touv difficult.

Tables of several of the functions involved have also
been comnuted. (See table 5.)

i1Except for dg = 0, there is no reason to distinguich
any g, from any other, and if Q, bDe chosen different
from zero the question arises as to why thils particular value

of 9, Was chosen and not some other,

19
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III -~ THE SUPERSONIC CASE

Every function Y which satisfies equation (15), or
(setting

a
H = // p/q dq 1) (32)
“o
the equation
1 - M3 Yo = (
=—— Ypg VYgg = O 83)
03

can be considered as the stream functlon of a possidble com-
presgsible fluid flow, .

In this section M will be taken greater than 1,

Since both M and p are functions of g, and since
equation (32) may be interpreted as defining q as a func-
tion of H; oconsequently, the coefficient of Wgg 1in (33)

is also a function of H, say, L(H) - that i,

2
L(H) = E——E—i > 0 (See Notation.)(34)
P .

The reduction of equation (33) to canonical form may be ac-
complished by introducing the new variable A = A(H), de-
fined by

H
A(H) = J/‘./L(HS aH (38)
Thus ) !

van = VI 32 (VIE ¥ )= nw,, + 2y 22 (g6

‘This H 18 not to be confuged with the H defined by
equation (16). The lower limit of integration in (35) 1s to
be chosen later,
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so that the differential equation (33) essumes the form

- - 1 aL(H)] = 0 (37)
Voo ~ Van [z L(E) B3A Ya L

the equation is then in the required canonical form.

The coefficient of VY,, while 1t is a function of A,
1s difficult to express explicitly as such, but may, on the
other hand, be given comparatively simply as a function of
M. If Nl(zA) ig defined by

1 dL(HE)
= 4 N,(2A) (z8)
2L(E) 2A :
the expression
ok
N,(2p) = EX 1 M - (39)
8 (“2_1)3/2

may then be obtained by formal computation; further A(M)
then may be seen to assume the form

A(M) = }-];- tan (r W M° - 1) - tan (‘\/Ma - 1)

= % tan (b B) ~ tan > B (40)

where
B® = M® - 1 (41)

h = /& -~ 1
k+ 1

It 1e vpossible to simplify equation (37) by the use of the
following transformation.

and
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W(A,8) = H;, V(A,B) . : (42)

sA
Hy = exp Ci/n Nl(Al)d.Al> (43)

V(A,8) then satisfies the eguation

where
1 aF
F,(2A) = N,® + = 232
1(28) ! 2 a4

B+115( k+ 2 ko 2
= [(ﬂslx+1:{+6_14-(4k+8)—(3k—1)3-} (45)
64 B B B®
Finally, it is convenient to use an alternate form for
equation (445. If £, n are defined by

E = A+ B, n=A-9 (46)

then (44) assumes the form
Ven + Fo(E +n) V=0 (47)

The general solution of equation (47), which is of hyper—
bolic type, may be represented by a formula which involves
two arbitrary, differentiable functions of one real variable.

In reference 5, appendilx III, two different methods
were considered of obtaining sueh a general solution. The
first method is essentially based on obtaining the repre—
sentation by use of Riemann's function of equation (47),
while the second is the analogue, for hyperbolic eouations,
of the representations (24) and (31), for solutions of the
elliptic eouation (18)., (See appendix III of the present
report.)

The validity of this representation follows at once
from the following:
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Thecrem: Let
V) = Vem +Q(8 + ) vV =0 (48)

where Q( ) (Q is considered as continued for complex val—
unes of the srgument) is an analytic function of the complex
variable { , which function is supposed regular for

‘Q'f_Al; then, there exists a set of functions
-+
E(n)(.ﬂ.), n = 1,2,..., A='§——éﬂ (49)

so that

V(E,n) =vl(£:n) +v2(§sﬂ) (50)

is a solution of (48), where

V(€M) = £(8) + Z 20 el® ey
, n=1 °
o (51)
vaEm) = gln) + ) B (melrdn)
n=1
and .
elodeey = £t «Lodn) = &(n)

: ' n |
sntadce) =f rl¢e, da ¢y, g[n+1](n) =/ g[n](nl)dnl
- .o

0

f and g Dbeing two ardbitrary, twlice differentiable func~—
tions of € and 7, respectively.

The proof of this theorem wlll be given in appendix III.

Note that in slightly different form this theorem was enun—-
ciated without proof in reference 5. '
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This theorem cannot, however, be applied directly to
equation (47) as P, given by (45) has a pole for A = O,
There are, however, several mossibilities for overcoming
this difficulty.  For example, F, can be spproximated in
the supersonic range, which is under consideration by &
function F_, which satisfies the conditions on ? 4in the

thecorem.

In many instances, the whole flow lies in s part of
the supersonic region and the theorem then can be applied
directly, merely by shifting the origin, as is done in the
following example. In appendix IIT, this will be discussed
in more detail.

The following extremely simple example is intended to
serve only as an illustration of the method described above
for obtaining flow patterns in the hodograph (or'related)
planes. A digcussicn of the procedure necessary for deter—
mining the corresponding flow in the physical, the (x,¥),
plane will then conclude the section.

Choose for the f£(£), &ln) of equation (51) the func—
tions?

£(g*) = 100(¢* + 0.1)°

a (52) 1
g{n*) = —100(n* + 0.1)
If 4n (48) @ = 0, the corresponding flow in the
(, n)-plane will De
V¥ = 100 [(E* + 0,1)% — (n* + 0.2)%] (83)

These streamlines are indicated in figure 4.

In the following the general case Q # 0 will be
considered.

The evealuation of the functions V;, v 2 introduced

'See appendix III. Essentially, £*, n* differ from
¢, N, respectively, only by a constant and V* ig the
function V of equations (48), (50) when the corresponding
value of €%, n* hag been substituted for £, n, respec—

tively.
“See appendix III. Functions v¥, V4 are obtained from

Vi, Vz, respectively, of equation (51) when the corresponding

values of * * _
tively. £€*, n have been substituted for ¢, n, respec—
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in equations (51) then will consist of the following steps!

£f(E*) = f[°](§*) = 100(¢* + 0,1)°

E*
£ Bl(g) = / (ga*daey = 199 (g% + 0.2)
Yo fx _
£lleew) = / e (1) (e¥)ae?
o
= loor‘(g* + 0'1)4 — foll)s"g* — (0-1)4 ]
i 12 5 12
el3l g xy = lool LE* + 0.1)° (0.1P %2 (0.1)4§5 _ (0.1)5}
L 60 6 12 60

£08) gxy = 100[ 7 * 0.13° _(0.2F ¢*® -(0.1) g*®

- 36Q 18 24
_ (0.1 ¢* (0.1)5]
60 360
- af
In table 6, the values of " and f ﬁ](ﬁ*), n=10,1,2,3,4
a
for a given set of values of E* are tebulated. B
Remark: Since g(n*) = —f(n*), the values of g(n)(n*) and
ég% may also be obtained from table 6.
n .

.

The values of V:, Vz, and v o= V: + V: as well as
V¥ = H V*, are tabulated in table 10; U4* ig a function
of £*, n*.

In order to carry out the transition to the physical
plane, the values of Jy*/dq and dy*/36 are needed.?

lHenceforth the asterisk which indicates the dependence
of the function on §£*, n* will be omitted, as this will,
in general, be clear from the context.
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A€
£
>-n*
1
Figure 4.

Sy _ = * *

5a = Va = Vet * ¥
(55)

N
36

l
<=

o = Wby T v g
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_ OH * _ (k+1) (B2+1)%
\IJE* = SZ& V(E*, n*) + va* = Hl:—- p =3 Y + Vg*
(86)
(k+1) (BR+1)2 T
Yoe = E [— T vn*J
where
- (o]
Vex = jgi* DI AL
L. n=1
—co [e-]
n=1 o | n=1 (57)
= My + Mg + M, *
Va* = §%§ + gn) g dme) |« ny 4 M,
n=1
and
)
=8 _ B = '
TG -t
. (58)
* = * =
ﬂq q s Mg 1l
- * - (n)
: A = E-—%—E:; Egi) = é%%ﬁrd the use of E is to call

attention to the shift of the origin; K,, Mz, Mz are equal
to the expression in the first, second, and third brackets,
respectively.

27



NACA TN No. 1096

It follows that

Vg = gh¥* + by

— 2 .
=§HL—(1‘21) (3 ;;L) V+M1+2M2+-2M3+M4] (59)

Vg = H(VE* - V%) = H[My - ]

s e B B () (50)
n=1

In table 9 the values of M;, Mp, M, r44,%wq, and Yy are
tabulated.

In addition, in table 9 the values of - . - - -

z s
ﬂ'aqe— By
L4 6

ox 1
33 ) = ~cos 0 —— > (61)
Y= const Pq &)
and

2 3 2. 8
] — B

0y 1 [qu Vo ]

g— = —gin O P ¥ =

9= const Pa e

are also given.

As has been shown in reference 2, the corresponding
values of x and vy, that ie, the image in the physical -
Plane of the hodograph flow, may be odbtained from the formu—
lag?

w-r

1The integrals are to be understood as taken around the
corregponding contour. N
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[1, o~ Ly e las s
x= = VY, cos - — sin
d/“ p 74 pa ' © |

[ B= 1
l - we cos 8 — — W sin 9} dq
L Pa® pg @
> (82)
1 1
vy= Pf-—\g sin9+—-~\Lf5c:osS7de+
J Le e Pa J
M2 o+ 2y 6 la
sin + — cos a
qug Vo oq a 4
—
. (p, is supposed set egqual $0 1 here). _
Now, along a streamline
Ay = ¥ dq +¥g ab = 0 (63)
that is,
Wq
a3 = — 7 ge (64)

so that if the integration is carried out along a streamline,
(62) then assumes the form

1 - .11 h
x = cos 8 o— EBﬁbg — q*u® ] dq
. .e q pqe
> (65)
- r = 27
vy = [ sine 2 B%S - % y® L 4
Yy % {pa )

Similarly, if the integration is carried out along n* =
. constant, from the fact thast
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g*__n*=29

g# 3 'ﬂ* = 2A
it is easily seen that
1
a8 = — d¢ = 4A
2
. (66)
q
dg = _E aA = = g8
ah B
and therefore along n* = constant
. 3
8 B
¥ = cos [@Q + - \!fe>]de -_ —]'-— sin 8 d\l,l
. poLNE q Pq .
> (67)
in @ B _ 1
y = 3_3__8@ + = )}as + — cos 6 4y
_ P @ q ¥ Pq J
(See dimgram II, p. 85})
IV — THE MIXED CASE
To every analytic function, ‘g, of a complex variabdble

%Z there corresponds & solution Y*(2) = ¢*(A,8) of equa—
tion (18) obtained by substituting g 4into the operator
given in equation (24). Referring to equation (16),

— )
Y = Y*H may then be interpreted as a2 stream function, in
the psuedo-logarithmic plane, of a possible flow pattern of
& compressible fluid,?

11t is necessary to speak of "possible" flow patterns,
gsince 1t may happen that the image in the physical plane of
a flow obtained in this way, is multiply covered, in which
case the complete flow pattern has ne physicel significance.
(It should be noted, however, that, in this case, those parts

of the flow pattern which » 2 "schlicht" do possess physical

significance.)
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This flow pattern is defined in every (simply connected)
intersection of the domain of regularity of sy with that of
the domain I (L is that domain of the (A,8)—plane for
which 625 3A2, A < 0), which intersection is supposed to in-—
clude the origin.

If, for g, the complex potential of an incompressible
fiuid flow (in the pseudo—logarithmic plane) is substituted,
the resulting function 1s defined in a domain H which in
many instances may lie partially outside L. (See fig. 5.)

T

'/5_

Figure 8.

Despite the fact that the funcetion V¥, may be regular
in the whole domain EH,  the procedure which has been de—
veloped so far, yields only those values which lie in that
part of H which lies in L, so that the cuestion arises
as to how to decide in what regions outside of L, WV* ex—
ists, as well as the question of how it may be determined.

In order to evaluate WVY* for those values of A which
are near zero — thats is, for high Mach numbers — many terms
of the operator (24) are needed, so that it would be desir—
able to find other methods of evaluating VY* for these
values. : :

Caell this domain in which the operator (24) may be ex—
reditiously employed E,. In the remaining part of the in-—
tersection of I and H, V¥* may be obtained by analytic
continuation, as well as in that part of E which lies out—
side L,

In section 17 of reference 3, the general ideas under—
lying such a procedure were developed; in the following, a
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more detailed discussion of this procedurs will be given,
and some methods indicated for overcoming certain difficul-
ties which arise in its application.

In the following, the particular solutions which are
due to Chaplygin will be given, in which case it is conven-
ient to replace the wvariable ¢q dbdy

k - 1 2

= L_._z_). q2 = QM (68)

Ra, M< + 2B

1
f = ——— (69)
k-1
Obviously, for k = 1.4 and e, = 1
1 . 5

= = = — 70
T 5 qQ g > ( >

the values of T for corresponding M, B, T, v/ag, A arsz
given in tables 3 and k4.

If equatic. «13) (from which (18) was derived) is ex—
pressed in termg of T and &, it asssumes the form

: B~ 7(28 + 1) d —B v 7
(1-1) P ]‘Vee + 5?[”_“.? ™) S'-F}' o. (71)

Following Chaplygin and separating variables, the soluticn
of (71) may be written in the form

(=]
8 o
y(T,8) =Z 8y (T)cos "z + bp(T ) sin Ei— (72)
v=0 T - o ’ T T )

(~L< 8 £1)

where a b satisfy the differential equation
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& feio B dayy 1—(28+ 1)

-anap_
ar TR T g

aL”®

{
O

(73)

a (. v=p @) 1=(2p+1)7 =B »in’hy
- e l-T(:L T) —a-?-}— (1 =) (1 T) aL?

which can easily be transformed into the hypergeometric
eauation.

Unfortunately, the power series for these functions
converge so glowly that, in most cases, this approach must
be ebandoned for computatlenal purposes. (See sec. 17 of
.reference 3.) On the other hand, if certain changes in thils
approach are made, numerical results may te obtained. Two
such procedures will be discussed in the following:

1. The solutions of (73) are expanded in the form of =
power mseries, not, however, around T = 0, which is the
case of the hypergecaetric series, bPut around some conven—
iently chosen value of T which lies inside the interval
under consideration. For example, it will often be conven—
ient to introduce, for T, the variable

G = T - 0.15 (74)

Since the particular solutions are often considered only for
2 small range of variation of T, say, O0.13 < T < 0.20,

the coefficlents of (73) mey be approximated by polynomials

in o, so that if, say, L = n/? the equation approximat—

ing (73) is for B = 5/2,

2
acu
(—0® + 0.5500 0® + 0.2325 o + 0.0181) 353
. \
+ (1.50000 02 + 1.4500 ¢ + 0.1838) — dU
2
+ (0.1000 — 6.00000) » U = O (7s)

It follows that every solution of this equation can be rep—
resented as a linear combination of two independent solu—
tions, each of which c¢an be written in the form of an in—
finite series in O, which will converge for |o| < 0.15,
at lesst, a range of convergence which will be sufficient
for most purposes,
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Solutions U, (o; v), Uz{o; v) are chosen so that

1
} (76)
0

U,(0; v) =0 UL(0; v)

Uo(0;3 v)

1 CUL(0; v)

Thus*
U,(o; v) =0 + az0° + ag O° + . . .
. . } (77)
Uz(o; v) = 1 4+ bgo + b,0° + .
a3, by, 1 = 2, 3, + . . being functiong of v,

If the foregoing expressions are substituted into (75),
the following sets of egrations are obiained .

0.03826a, + 0,18875 = 0 S
1.45 — 0.1 »° + 0.8325a5 + 0.11475a, = O
1.5+ 6 2+ (4 — 0.1 v3)ag + 1.94626a; + 0.229584 = O]
s (78)
0.019125(n+1)(n+2)ap, , + (n+1)(0.18375+ 0.235n)an,,
+ (0.9n+ 0.55n%-0,1 v®)a, +(~n? +4.5n~3.5+6v%)a, 6 =0
n=2, 3 4 5. .. J

1The asymptutic behavior of solutions’ Uy and U for
large values of n 'can be obtained as fOllOWS' If the coaffi-
cient ¥ 1in (18) is avproximated by cA~2 (for k = 1.4,
¢ = .0%35) all subsequent formulas bhecoms s:mpler (e.2., sen
Ref. 3, p. 31). In particular, equation (43) of Raof., 7 becomes
HS\Uee + \.lJHH = 0, t.e., I{H) = (1~ MZ)/pZ = FE%, where =& is a
certain constant which 1s not e ?1 to For X =0, t.2.,
M =1, H= 0. Therefors, = 1( n5 (E) cos no is
substituted into this equation, ther=s results
L(n) = K(na/ 8-2) H) where the functional form of X 1is
independent of n. The expression cA™e aporoximates

asymptotically the exact value of P, since in the. neighbor-
hood of A = 0,

[od

nﬁ.' :‘;’l }
Y bgronl-37Fi1-n2) 2] (=542 )3

w=2 R
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0.03825b; — 0.1v° = 0 a
6v® + 0,8325by + 0,11475b, = O
0.2295b, + 1.94625bz + bo{4 ~ 0.1v%) = 0
> (72)

. . .
e o, al

0.019125(n+1)(n+2)bpy 2+(n+1)(0.18875+0.23575n )b, ,

+ (0.9+0.550°~0.1v% )b +(-n?+4.5n—53.5+6v2)b,_, = 0

n=102,3o)+95’-" Y

bou-tions (78) and (79) then give a; end b, as poly—

nomials in v®, Since 1t is often sufficient to consider

the series (77) in a small interval, say, |o| < 0.05, 1%

. will suffice to employ only a few terms of this series, and
hence it is necessary to compute only & small number of By
bio

2. To employ the secoand method mentioned, egquation
(73) is written in the form (setting L = n/2 as before)

2

du du
(0.15 + ¢)(0.85 — o) + (1.50 + 1.225)—
dc® do
0.1 — B0°
—ua(-———————-——-')u = 0 (80)
o + 0.15

and two independent solutions wu,{o; v), uz(c; v) are deter—

mined, not by the power series {(7?7) but by an epproximation
method. That is, write

EE = v or Au = vAC - o (él)
daoc _
Then
B5c+1. 0.1~
Av=[— 1.50+1.225 >v+v2< 1—-69 )u]Ac {82)
(0.15+0)(0.85-0) (0.15+0)2(0.85~0c)
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Assume thet A0 1is in a small interval, say 0.001, and

that for o = 0, u = 0, v = 1. If (81) and (82) are em—
ployed, A4u(c) and Av(c) mey be determined at o = O,
and hence . : ’ ’

u(0,001) = u(0) + Au(O0)
(83)
v(0.,001) = v(0) + Av(0)

from these values of u and v, Au(0.001) eand Av(0.00l),
and u(0.002), v(0.002) may be found and the entire pro-—
cedure continued until an approximate curve 1s found for
u(o), 0 <o <£0.15. In this menner the desired integration
ig performed. .

Both methods described above are appropriate for the
purpose of computation, but they are insufficlent to give an
insight into the behavior of the particular solutions when
vV - .

" As has been mentioned, there are instances in which the
whole flow is subsonic and therefore it is necessary to con—
slder particular solutions only for this range. In this
case it is useful to consider certain other expressions
which will be derived in the following. This procedure is
likewise based on the metheod of separation of variabdles,
However, instead of employing the variables (q,8) and even—
tually (T,8) as in the case of equation (71), the variables
(N,8) are employed so that it becomes necessary to consider
fqu?tion (18) once again. PFunction F has the expansion

26).

Let

y* = U, cos v8 (or U, sin vO) (84)

where v now has the meaning
v

v o= T . v*¥ = 0,1,2, . ..

(Drop the subscript v to let U = U,; U will vary, of

course, with the choice of v, even though this i1s not in—
dicated by the notation.) Thus, obtain for U the ordinary
differential equation

U" — v38U + 4FU = O - (85)
36
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If F dis written in the form given by equation (26), then
as before, two independent utlg will be determined.
These will be denoted by U , H two cases must be
distinguished, that is, whether v 1is or is not an integer.

In the latter case,

[==]
A
1 1 v+3n )"
EL N ) (v+an)
n=o0 > (86)
2 (2) (— A
U( ) - 5? ay e( v+azn)
n=o
: J
where
(1) (=)
do = 1 do = 1
(1 —C 2 —C
NEE N ,
1+v 1-v
() (=)
da(l) _ —Ga—c d'l da(a) - —CZ—C d'l-
4+ 2v 4—2v
(1) (1) (=2)
(1)_ _Cn—cn‘_‘ldl —°"-Cldfn"'l d(z) —Cn"‘cn—ldl—. . .—'Cldn—l
an = — - =
n +nv 2. ' n=—nv
Cp, are defined in equation (26) and listed in table 2;
while in the former:
(1) (3) (pe2n)t W
= n
U = dn e
n=o
? (87)
) had A A
U(a - Ej (ksne(v+2n> + dn(4)e(—v+2n) >

n=o 37 J



NACA %N ¥No.-1096 .

The convergence of these series will be discussed in avven-
dix IV.

In section 17 of reference 3, a procedure has been in-
dicated for constructing a mixed flow (that is, a flow
which is partially supersonic) around an obstacle the
boundary of which is a c¢losed curve. :

If the boundary curve is vrescribed, then, probadly?l,
in many instances, no solution of the problem exists, and,
therefore, the problem arises of firding necessary and suf-
ficient .conditions in order that a (mixed) flow pattern
around an obstacle a2xist, 1In considering this equation,
two cases have to be distinguished: Either

1. The behavior of the flow at infinity i1s completely
prescribed (for examnle, & uniform flow with no vorticity),
or

2. The flow at infinity possasses certain propertles,
but any solution such that its behavior at infinity is of
a certain type will be consider=sd as admissidble,

The second problem is .to determine when the solution is
unigue® and, further, under what conditions it is "stable.!
This situation suggests considering a problem wWhich mathemati-
cally is much simpler (but still exceedingly difficult),
and, in certain instances, can give the tyone of =answer de-
sired by the research engineer, namely, the aquestion whether

o

*Unfortunately, na definite results in this direction
are known to the author, ' On the other hand, investigations
of problems of similar tyvpe seem to indicate that the above
is the case. See, for instance, reference (9).

21t would be necessary to take into account the fact
that solutions with a free boundary can exist. See exam-~
ples of solutions with a free boundary in incompressibdble
fluid case given in reference 10. What occurs when no
continuous solution or a solution with a given free bound-
ary exists, and under what condition a shock wave arises
are not known. (See fig. 6.)
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Cagse of Thiry,-(reference 11)

(a) | (»)

—qize—
— = ==
| — o

Figure 6.~ Examples of different flowe with free boundary around the eame
obstacle. & free boundary is indicated by . « « .
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to & given hodograph there exists a flow possessing the
prescribed behavior at infinity. Often it will suffice to
know not whether a flow pattern exiasts around some pre—
scribed (in the physical plane) profile, but only whether
such a flow exists with prescribed (or approximately pre—
scribed) velocity distribution. Then the whole investiga—
tion may be shifted to the hodograph plane, and the prod—
lem corsidered as formulated above. 4s an example, a flow
around & Joukowsk! prafile will be considered iIn order o
determine whether to a hodogreph similar to that indicated
in figure 7 there corresponds some mixed flow. In the
following,some necessary conditions for the existence of a
flow pattern satisfying certein conditions will be given.

HO | plane

T

(a) . . (b)

Hodograph Tigure 7.

While, in the case of a subsonic flow, it is more
convenient to operate in the (A,8 )-plane (in the pseudo—
logarithmic plane), in the case of a mixed flow, 1t is
convenient to return to the {(H,® )-plarel, since A(M) be—
comes imagihary for M > 1.

As N and H are connected by the relation
B M2

:i__. W(H) = X M , it does not present any theoret—
v U(H) = . _

ical difficulty to replace the variable A by the variable
H, in functions 8y(A,8,A5,05), k = 1,2,3, which represent
e pseudo vortex, and two pseudo doublets, respectively.
Thus, functions are obtained which shall be denoted by

aAA =

Te(H,0:Hy,0,) = Sp(N,B:Ag8,) (88)

. .
Here:, H 1is employed in the sense of equation (32).

L9
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It is now assumed that at the point (Hg,8o) (which is the

- image of the point at 1nfin*ty in the physical plane) the
- function behaves 1like

AT, (H,83H,,8 ) +AT (H,03H,,0,)+A;Tx(H ,83H,0,)+R(E,8) (89)

e

where R(E,®) 1is a regular function of H,8, (¥Naturally,
A;, Ay, A; must satisfy-the conditions indicated in sec—

tion 14 of reference 3 in order that ia the physical plane a
flow sround a closed curve is obtaiuned.) Now, the question
arises whether or not a function R(H,®) can be found

such thet the expression (89) vanishes on the boundary line

of the hodograph. (See reference 5.

Remark: It is not immediacely apparent that Ts(H,e;HO,GO)

ig a single~-valued function; however, 1%t is possible to prove
that this is always the cmse. The assumption is now made
that the stream function ¥ can be approximated in H, by
Chaplygin's soclutions

M
EZ{%U(H)[AUCOSUB+BUSinve]+ QU(H)[cvcosv0+Dvsinve]}- (90)

=1
AS

Figure 8,

5]
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A system of functions will now be constructed which, as
wlll be shown, possesses the property that every function -
which is regular in H; c¢an be approximated by a conven—
iently chosen combination of these functicns, As has been
proved in appendix I, every soclution of (18) can be repre—
sented in H,; in the form : '

R(H,8) = Re[P(g)]
(e1)

Ple) = L(o)g(Z)+ L(l)gtﬂ(Z)+-. . e 7 = A H) + 10

(see equation (30)) where &(32) 1is a conveniently chosen
analytic function of a complex variable. Let H, be the ’
image of H; 4n the (»,8)—plane, and let W(A+18) be that
function which maps H; 4into the unit circle (see fig. 8)

W(H,8)=WA(H) + 16] (92)

maps H; into the unit circle. Every regular analytic
function g(A+i8) of a complex variable A + 16 can be
represented in H, 1in the form

«© .
v
ns_‘aw
€ PV Y
v=0
Setting

Ron(H,8) = Re{P[Wn(K(H)+19)3}

(93)
Ron+,(H,8) = Im{%[yn(k(H)+ie)]1

J

a system of functions is obtained such that every function
Y can be developed (and therefore approximated) in H,, by
a series of such functions.

Remark: The classical theorem of Runge on approximaticn ar
analytic functions ststes that an analytic function can be
approximated by a polynomimsl in a simply connected domain,
while, here, an avproximation on the boundary slso is nseded.

This difficulty can, however, be overcome in a manner
similar to that described in reference 12, Since Y* gatis-
ffies in H,; the linear partial differential eauatinn

bho e
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AY* + UFY* = O, the function VY*(W) in the W-nlane also

satisfies an equation of the same type. Now,

in referance 12,

i1t is proved that to every solution Y*(W), which is
continuous in the closed domain, another solution WVY* of.
the same equation can be dstermin=ad which is regular in the

closed domain, and such that lw* - w*l s e,
can be chosen arbitrarily small.

The fact that the domain H,
not cause eny difficulty, since the function

where € > QO

goes to infinity does

y*  for —A

.sufficiently laerge is arbitrarily small and the domain H,
can be replaced by a bounded domain, assuming that the

line - — — —~ is part of the boundary curve.
o
|

k {

(See fig. 9.)

I | (
L;ﬁ_,“jl,.f~f’ T - Figure 9.

Agsume, now,

that the reaquirad functlon existe

V
>

. By

the assumptions which have been made and the foregoing

considerations R(HE.6)

N
\—r

p=1

Therefors,

lim J— N 3
M—> o VA
1_h1 v=1

v=1 ha =
N 3
+ f y apyRp(H,0) + Z A,T, — Z by Cyp( H
k Lv=1 V=1 V=1
5 N 3 M
+/ 55 apRy(H,8) + ATy, — Z by, Cp(H
k V=1 v=1 v=1

may be approximated in H, by

M

R aURU(H,e) and the entire term (89) in E, by bUGU(H 8).

V=

vav(H e) ds
1

T2
8) as
32
8) aeb=0 (94)
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Remark: Note that ay = a”(N> and by = bv(N) will, in
general, depend on N, a&although this is not Indicated in
the notatlon.

From the preceding it 1is then possidle to conclude
that:

Ir 7T,(H,8; Egy9q)s v = 1,2,3 denote functions with

singularities at (H_,8,) (see (88)), and Ry(H,8), v =
1,2,3 are particular solutions of (18) which are definsad
by (91) and (93) in the domain L, and, finally, Cy(E, 8),
v =1,2,3,. . . are the Chanlygin solutions which are obtained
by replacing T in (71) by 7T = T(H) and apnlying the
method of separation of variables, then, a necessary con-
dition for the existence of a flow the hodograph H of
which is prescribed and which satisfies the hypotheses
previously indicated is that for M and XN (%gfficiently
large, and for conveniently chosen ay (= ay ) and

by(= v,{¥)), the expression on the left-hand side of (94)

(omitting the limit signs, of course) can be made arbi-
trarily small.

CONCLUDING REMARKS

The treatment of two—dimensional irrotational motion of
a compressible fluid, developed in this and preceding pudbli-
cations (references 1 through 5), can be considered as a
direct generalization of the classical methods employed in
the ipncompressible case.

In the present paper, & representation for a streanm
function of & compressible fluid flow in terms of an arbi-
trary analytic function (which had been previously derived)
has been considerably improved. An analogous formula for
the stream function of a supersonic flow in terms of two
arbitrary, twice differentiable functions of a real variadble
is also obtained. A method is developed for extending a
subsonic flow defined in a portion of the plane into a
larger domain. In some instances this process will lead to
partially supersonic flows.

The procedures described for determining flow patterns

of a compressible fluid require, as a rule, long codputations
which necessitate the use of modern computational devices.

Ly
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On the other hand, the equation, {24), for the stream
function is linear, znd therefore the principle of super—
position of solutions may be applied. This fact suggests
preparing an "atlas™ of flow patterns, which should include
stream functions Y ,(v, 8), v =1, 2, . ., . , n of a num-
ber of basic flows (say, a flow around an obstacle of ellip—

tical shape, etg,) as well as & number of gimple solutions?
w“(v, 8),:p =1, 2, 3, « « «, . of the compressibility

jul
equation (18)., Every combination Yy *+ Sﬂ mu\yu, where
p=1

are constants, represents the stream function of a pos—

@
3

sible flow. By using some auxiliary tables (see reference
5) and convenierntly caanging the ap's, an engineer will

be able, comparatively gquickly, to vary every "basic" flow
mentioned above, sc as to obtain flows approximately, at
least of the form cdesired. This procedure can be applied
for supersonic, as well as for mixed, flows, ;
Two—dimensional irrotational motion is only a rough

approximation to the actual situation, since most flows are
three~dimensional, and friction, turbulence, and so forth,
influence the motion.

By the hydraulic hypothesis (see reference 15, p. 84)
turbulence can, however, in many instances be disregarded.
Further two—dimensional solutions can, in the axially sym—
metric case, be considered as g first approximation and
used in order to obtain better approximate solutions of the
three—-dimensional protlem. By using the two—dimensional
solution, determining the density p = p,, and replacing
p by p, in the equations V(pg) =0, VxT=0 (for
the three—dimensional case) the above system is reduced to
& linear one, V(poav =0, V X‘; = 0, A solution gl £

of the 1inearizé& system in which E?l satisfies the re— .
quired boundary conditions can be considered as =z second
approximation for the three—dimensional case.

'In certain cases 1t would be advisable to use for /N
the functions Xp introduced in reference 5.

Lg
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The use of certein tables which need be prepared only
once will greatly facilitate the work.

The nonaxially symmetric case may be treated by com—
bining the method described above with certain operational
processes developed by the author for generating three—
dimensional vectors satlsfying

Vg=0 and yXqg=0
3y employing a procedure similar to the one given

above, the boundary layer may be taken into account,

Brown University,
Providence, R. I,, October 1945.
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APPENDIX I
PROOF OF A FUNDAMENTAL THEOREM ON SUBSONIC FLOWS

In the previous reports of the author the basic
theorem on which the entire method was developed was:’

Theorem I: Let F*(2\) be a2n analytic function of a
real variable A, defined for —~o< a< A< —¢<0, which
possesses the property that

K.* t
Id_%c_ C(K+Iji+)-é’ for a<i<-¢, X=0, 1, 2, . . . (95)
ar (e — N\) : =

where ¢ 18 a suitably chosen constant.

Further, let Q(n)(ZK), n=1l, 2, . .. denote a set
of functions which are defined by the recurrence relations
(2n+ 1)Qx(n+l)+-Qxx(n)+ 4F*Q(n) =0, n=1, 2 . . . (96)
1
0 () - e

Q(n)(a)'= 0, —o<a < 0

Finally, let g(f) %bve an analytic function regular in
e domain B, which conteins the origin. Then

w¥(N,8) = Im {g(Z) + }; (2a): Q(n)(zx)g[n](z)} (97)

2%0nt
=3

Z
e Pz =U/ﬁ et at,
o

2y = o(2)

b7
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will be & solution of

Ly*) = & A A A 2P (98)
which solution will be defined in every simply connect=d
domain lying in the intersection of B and H, where H

denot=s the domain [a S )\ S - ¢, 0% < 3 A%],

This theorem was not, however, proved-for the ¥ of
(19), bdut was proved for F,, where Fp was a polynomial
in e2A ‘'which approximated F in the interval (=0, Ap) -
Ao < 0 to a previously specified degree of closeness; and

it was further shown that these Fm satisfied relation

(95) as well as the other hypotheses of the theoremn,.

In the following, it will be shown that the F of
(19) actually satisfies the hvpothese of the theorem in
the case Where a 2 -, .

In order %to prove theorem I for the F of (19), it is
necessary to show that

Theorem: To every interval
I=[a§7\§_€l]l—w<a' e <0 (99)

there exists a constant ¢ = c{a, —-¢)< » such that the
function T of (19) satisfies the inequality (95).

The main idea of the proof described below consists in
showling that F, when continued in the complex domain,
that ie, F{Z), Z = A, + iN;, is an analytic function of

the complex variable 2, which function is regular in every
circle .

A

b,
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Function F(T) is a rational function of T the only
gingularity of which (for finite values of T) 4is a pole

at T = 0O, ZTherefore, in order to prove that F is a regu—
lar function of 2 in the domainl

D =B—-w<aSReZSE-n<0, —»< 2rnkS Im Z € 2rnk < o]
it suffices to prove that T 1is a regular fuaction_of__z_
in D &and does not vanish there. Let X = e“, Then as Z
varies in D, X varies in the domain

05 e x| r<c1
with € = exp(2a) and r = exp(-n).

Ingstead of considering

- 1/ _
! T<1+hT e /E=1 L1 (100)
1+ T\1—h ¥ k + 1 .

1t will be found convenient to perform the substitution

A1l the above—mentioned considerations remain unaltered
by the change of argument T of (100) except that it now
becomes necessary to prove that s i1g distinet from 1 in D,

By substituting T = 1 — s in (100) the following for-—
mula for X 1is obtained:
-1

] N n _ |
X = [—1 ‘s] (102)
2 — g Lh - 1 + 8

Unless h . is 2 rational number, X will be an in—
finitely many valued function of s. In the following dis—
cussion, only that branch of the function X will be con—
sidered which has the property that T

-1 .
Im-{log[li_ L e SJ .1= 0 (103)
- h —-1 + 8 = O'j
B [ ] denotes the domain defined such that the co—

ordinates of the points belonging to this domain satisfy the
conditions given in the interior of the brackets.

49
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This bPranch is uniquely determined within a circle of
radius b~' - 1, for the branch point nearest the origin
occurs at s = 1 - h=!. In the following, by X(s) will
always be denoted the branch of X(s) described above, un-
less the contrary be specified.

Since X(s) 4is regular at the origin it can be devel-
oped in a power series

[~} A ‘.
X(s) = ;ﬁ a,s® a1 #£ 0 (10k4)
nhz"l
Now, as &1 # O, the inverse function s(X) 1is regular at
X = 0 and can be represented there in the form of a vower
series
[~ ]
\'(—|
>
s(X) = /., b XP (105)
n=1

It will be shown that s(X) is a regular function of
X for |X|< 1 and therefore hy a classical theorem of
analysis, the power series (105) converges for |X|< 1.

Lemma: The funetion s = g(X), which is the inverse
of the branch of the function X = X(s) of (102), which
satisfies condition (103), is regular in the unit circle.

Therefore, at every point inside the circle |s|< 1
the power series can be inverted and |[s| expanded as a
povWer series in X - X , where X, = X(s,):
s =8, + by(s )(X - X))+ - . (106)

It is now necessary to prove that the inversion about
8 = 0 converges throughout the interior of the circle
IXI = 1, Two independent proofs of this fact will be pre-~
sented.
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A, Determine the values of g8 at which the inversion
of X(s) may become impossible., These points are at s = 1,
2, ~1/hn, -L +1,3 41, and s = », the corresponding
values of le being 1, ©,», 0, =and 1, respectively.
Since only that branch of s(X) for which 8(0) = 0, not

s(0) = 1 + = 1s to be considered, it follows that the

function s(X) determined by the inversion of the specifiead
branch X(s) 4is regular inside the circle |Z| = 1. There-
fore the expansion of 8 as a power series in X will
converge for ]Xi < 1, for &5 has Jjust been shown by the
foregoing reasoning, for no value of X inside the unit

circle can 8(X) ©De singular.

B. Clearly, X(8) = 0 a% 8 = O ~Dbut nowhere else in-
side or on the circle s} = 1. In particular, on the cir-

cle Is{ = 1 it is not difficult to chow that the minimum

value of 1 X} ls 1. Herce, by the theorem on page 136 of
reference 13 and the proof presented there it follows that,
since dX/ds does not vanigh at s = O, @& can be expanded
ﬁsla power series In X convergent within the circle )
Xl = 1.

Since X = eZ and since 1t has been shown that s s

an analytic function of X in |X| < 1, 41t follows that
8 is an analytic function of 2 for ZRe(Z) < O.

Finally, to prove that e cannot be equal to 1 in D
(and hencw that T # 0), assume the contrary: namely,
s = 1. Then by equation (1), I{X| = 1, and therefore :
Re(Z) = 0. But, for all Z in D the real part of % 1is
negative. Therefore T 1is distinet from zero throughout
D, and thus F is a regular function of 2 in D,

As has been indicated in section II, the proof_of the
validity of the representation (24) for |8} < -A./&, A < o0,
has been given undsr the assumption that the quantity a,

for which Q(n)(a) = 0, 1is larger than -o,

In the following the proof for the excluded case & = —o
will be presented. The proof is essentially based on the
following corollary to the theorem, equation (99).

Corollary: To every positive number P <1 and every

:;gative numver ALO)  there exists a number c(p,k(°)) such
at
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K

4 ¥ | < (X +K1);, for A < %(O),— K =0,1,2,. . .

aA (-Ap)tt® 1-p

Z .
Proof: Let G(2) =_J/n F(¢lat, 2 = Ay + iIN, . As has
o

been shown above (see also pt. II of sec. 15 of reference 3
and appendix I of reference 5), F(2) can be represented for

Ay < O 1in the form of the following series:

m .
P(2) = E; QG eznZ
n=1
(The constant term vanishes since F(-») = 0,) Therefore

(Justifying term-by-term integration by the usual argument
involving uniform convergence§ G(Z) may be expressed in the

form:!
oo
4]
Bn ' n an
n=1

Having chosen A(O), 1% follows from the last equation that

there exist® a constant, A(A(O)) guch that for

}\1=Rez_<_=7\(°), . e e e e =

IG(Z)l < a(aledyga™

Now consider any real A such that A < A(o)/(l - p).

(It 1s understood that A {(0) and p are held fixed during
the present discussion.) Draw a circle ¢ with center at
Z-=A &and with radius (-pA);.  this circle lies entirely to

the left of the line A, = A °). Accourding to the Cauchy
integral formula: :

Bla
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a&r s¥+g (X + 1)'.f e(z)az
= —_— " K
az® /5o az®*t ), zri (2 - ) T2

By setting 2 = A - pkei¢, 0S® < 2, the last equation
becomes:

2T _
afr) | (x o+ 1)t [ (caMe(n - phet®)e?? ap
dZK I or 'Jo (_p>\61®)K+3
Now: leiQ‘ = 1, I—pk,eiQ* = —PA,

and . :

P
(-pA)G(A - DA ei¢>| < ](_pA)A<x<o>)ezRe(A—pxgi_)
Since, for .

0< < am Re(h - pael®) 201 - p),

thers is obtained the Inequality:
[(cpn)6(h = paot®)] £ (comia(a(0))esr(1op)

Since A < A(O)/(l - p), it is apparent that there exists a

constant c(p.A(o)) such that the right-hand slde of the last

inequality is less than ¢ for all A, Therefore, from the
second form of the Cauchy formula given above, there results:

oD+ 1y A
(—p) 52 ’ 1 -
Z=\ -PA P

A

dZL
which yields the statement of the corollary.

3 (0)

Now, given any A < 0, 1let be chosen as follows:

A©0) <0 ana p positive but less than one such that

A< A(O)/(l - p), and then the corresponding number c(p.A(o)):'
has to be determined. )
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Further, the dominants a(n) have to be defined by

A
g(1) . 40/“ an__ . __4c
JooGan)? 2PN

-
and the recursion formula
A
2
(2n+1)§(n;l) = Qii) + be(-rp) 2 j/ Q(ﬁ) n, a™(w)=0, n=1,2,. ..
-

rather than by  (94) of reference 3.

Now it will be shown that there exist a set of constants
c(n)such that:

ain) (n)K~ph)~(n+1)

= C

(n = 1,2,., . .)

Proof: This equation is seen to hold for n = 1 with

c(l) = 4c. Suppose the theorem holds for n = n,. Then:
A
~ (- s )
{2no + l)Q(:g+l) = o(n) ((—pk) (na+1)> o+ ho(-ap) //‘ o(80) (- (ag) gy
—c

By carrying out the integration, there results:

de c(no)]

(2n, + 1)5(n°+1) = (~pA)Pot® [p c(n'o)(no + 1) +
L p n,

By letting

c(no)(no + 1) + de c(no)/p n,

(2n, + 1)

(mo*1) _ p

it is seen that the inductlion is complete, and the statement
made above 1s established,

J'It should be remarked that in formula (94) there is a
misprint: (-A)™" should be replaced by (-a)~R,

5lec



NAGA TN No. 1096

If the last equation or both sides is divided by c(nO),
the following formula is obtained for the ratio of successive
coefficients:

(n,+1)
c °© plny, + 1) + 4c¢/p ng

c(no) 2ngy + 1

By letting Ny -~ o, the result obtained 1s (dropping the

subscript on no): .

(n+1) . ¢
Lim S = -
n-> o c(ns 2

na(n)(zx)

¢

=]
from which the convergence of the series 1 + zz ¢

n=1

< 1l or

(see (97) of reference 3) is assured for

2A
Ei2 < 3A°.

51d
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APPENDIX II

THE EVALUATION OF TEE Q(n)'s AND THEIR DERIVATIVES

In appendix I, it has been shown that operator (24),
when applied to a function g which is analytic 1n =
domain B, generates a solution of (18), which is defined
in that simply connscted subdomain of B, the coordinates
of which satisgfy the relation

8 < /I N< O

In this fashion, poessible stream functions in the (7,0 )=
plane.of a compressidble fluid have been formed,

However, it is necessary to evaliuate the functions
Q(n), deflned by {107), in order %o appiv operator (24)
in practice, and in reference 3 this has been done for
Q(l’, Q(a), Qi3 ), ana gl*’, Often, a greater numter of
Q's 4is rsguired, ard for this reason, in thies appendix
Q(n , n=1, 2, . « ¢4 8 are computed. o

Ag iv nhes oveen shown on pp. 53--51d, & as deflined by
(19) does actually satisfy the conditions of theorem I of

appendix I, when &a = ~, The Q\BJ!g can be determined as
follows: -
(2n+l)Qx(n+1) + Qkﬁ) +ar {2 0 (107)
1)
Q( = —4 T oaa
-0
Q(n)('—m) = O, n = 1,2,. e

If equation (20) be differentiated, it may be easily
seen that

an —5T=2
—_—= - (108)

ar (T2-1)(T2-8)

so that if F be given its value in equation (19), then

e2
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A o

/
(1) o P =g 7 oar
< u/'1 aT
A=—c Txg
Ini
i
A 2

= _4/ (—0.12T2+0.51+0.21T °—0.83T *+0.45T7 %)

=13 ) — 2 \
% ( 5T >dﬂ

(P2-1)(T%=8)

- +7
—0.50T ° +0,35T *—2,400+1 4l +1, 28 1og<:/£_i——> (10¢)*
6T

) 1Note that there is a misprint in formule (107) for
Q(l given in ref?rence Z: fgr general k, the correct
formulas for Q(I and Q(s

erea:
(1) = (1*k) [(1—31:) re 25 g-1_5g3 . 4
8 k—1 k+1 3 h(k+1)°(k—1)
nT+1 ] -
X log ] (109a)
2 2 3 =2
%) - 1 (k+1) [(3k—1) s _ (BEP+28k°-B8k+16)
2048 (k—1) 3 (k-1)
4 (41:*+96%>+1812~112%-91) (k—-1) g ?
(k+1)°
(44%° +192Kk2+236k+80)( k+1) - (39%k%—80%k—115)( k—1) 75
3(k+1)? 5(k+1)
25
— 10k(k-1) T°7 — —(EP—1)7"®
9 -
64h 1/h—T T
+ ~ ~ log ] (109v)
(k-1)"(k+1) 1/B+T “pog
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From (107), for n = 1, it may be seen that

j/ ( SO + 4 Fq(l)>ax

A A
e (0B [ ap 1(1)? .
S <4dx ¢ CRY )d . d<4 "3 > (10) .
Therefore

A
(=) _1 1,003 _ 4y, 10207
Q =z <4F + EQ >—m— SF + SQ (111)
In (107), set n = 2 +to obtain
sa{?) = —q{2) — art ®) (112)

and if this be integrated from —e to A, the following
expressions are obteined

A
5q(3) = _Q‘§\2) _ 4f FQ,(B)GJ\.
» PN 1yEagls)
A=) 16 1 (1)"aQl?
Q5™ —~ _3__/' Foan + )/ Q e——dh (118)
oo ) o
If Q(l> 1s given its value in (109), (113) upon in—

tegrating the last term assumes the form
T

(3 2) (1) RN
Q QS\ ) —15/53deT

it

= —o.zoooq§3)+o.0111(q( 1) $ +0.0256T°—0,1152T+0,2194+0,045271

- - - - E—T
-~0,1675T 3+0.0376T 5+O.O420T 7—-0.0200’13 9+O.0886 log“/o - (114)
/o+
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Hemarlk: Q%a) and Qx(l) can also be expressed 1in closed

form as functions ¢f T.

If n 1is set equal to 8 in (107), then

A
7ql*) = o3 +[ (-am)et* o

and if (—4F) is replaced by Q(l> and the indicated inte—
gration by parts performed, then the formula

A
¥
7(+) = —qf@) + qf2)gle) _,/ alef@ar  (118)
A=—co .
is obtained. Now, insert for Qis) the expression

( ) = L gl=) . 4 ppl2)
° 6 Qx: 5 19

obtained by setting n = 2 in (107). This yields

A
7q(3) = (s 4 glalgle) 4 _51_/' Q(nq( 2)
*A=—o
A

+ %{(ﬂ rel 2ql2)an (116)

In ordsr to evaluate the first integral, two successive
partial integratioas are performed: nanmely,

_/n Q(l)Qﬁf)dh - Q(l)qia) _:/ﬁ Qil)Q§s)dl

Q(l)q§2) - le)q(a) +J/QQ(2)Q§i)dA (117)
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Insert this expression into (116) and employ (107) for

n = 1l: namely, —sqia) ='Q§{) + 4FQ(1), to obtain

7@,(4) = _..Q,i"a‘) + Q,(l)Q,<3) + _;_ Q(l)qg\e) + _g FQ(E)

+-é~ / Q(B)(Q&;) + a7l )yan
5 ) L L )
= o{®) 4 (M)gledy - (o™ = wo(?) - Z o®® (g

"Bemark: By using the previous results, (118) may be ex—
pressed in a closed form as a function of T,

It has not as yet proved possidble to efpress Q(n),
n >5, only in terms of the preceding Q'%/'s s&nd thelr

derivatives, which formulas would yield for Q(n), n > 5,
closed expressions in T, Qon?equently, it has been neces—
sary to derive formulas for @ n/ n =258, 6, 7, 8 in terms
of the preceding Q(n)'s and their derivatives bdbut which

also include one integration. Thus, a formal computatlon
leads to the followling

T
ofs) =_%Q§4)-§f FQ("')%dT (119)
1
(&) o _ 1 o(8) .1 o(2)o(s) _ 1 [ o(1)g(®)r 4
< TR IRETI N 111Q W @ (220)

() _ _o(8) o ala)a 1 (e) _ 1 (1)° (e)
ol ™) = —qf @)+ oMl & g3 ®) — = of®) ol

T

da\
+ _iS_l Q&s)Q(a) - ot (121)
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(8) o L1 7)), 1 1)ol?) 4 2 a(1)qg. (8)
Q =15 & +15Q( Q *Tes ¥ %

= slg( )% Lo, éfgiwq(a) LY (122)

In order to evaluate the expressions obtained for the

Q(n)’s, not only the preceding Q(n) nust be known as
functions of T, but their derivatives and the derivatives
of T must be known as well.

The following tables supply scme of the needed deriv—
atives., OCbserve that

Sa(m)
Qig) - aa s g - é’?’. .. (128)
. )- = ? 2 . . .

for 5 =0, Q{B) = glm),

In table 5, typical functions necessary for the ex—
plicit evalusastion of the Q's have hesn tabulated.
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Table
Derivatives of Q) of sth order

S
A
@ | o -4_[[ FdN
§ Q(S'l)F
8 -4
an(s-1)

Q(2) 0 4 F o+ 1(Q(l))2

1 +45,- 4 yq(1)

4 -4 7 oD 2
R 3 F)\E F?\Q + %—g F
4 -4 (L
3 £F ;- £F 0 * 16FF
4 % F>\4 - % F)\SQ(l) + 5_3'4 F>\2F + 16@)\)2
4 4 1) , 80 160
5 2053 F>\4Q( )+ 5 FysF + 75 F,ef)
A8 BAS A4 AsTA T T Ve
N
o(® | o - £ ng) + g%(Q(l)>3 - %nggdx
1 ,(8) _ 4,8
. -3 Q)‘z Q F
148 _a (. & (2)
1 (8 _ 4,,(R) (2) (=)
8 | -% Q)\4 5(Q7\2 F+2Q)'F, +Q F)\z)
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5-1
- 4fft- § L e®n

0{3)q { (2
-1 Q§5)+ (8)g(L) | 2 Q;\Z)Q(l)_,_ 2 o®p_ 2. 2>

N

“F e - F ;?\(;:JI} @@
3 o®- %__[fmwdx

-1 Q}(‘g) 4 74

- §ofeh - %:;:i @¥r)

s-1
5 5
o - & A

& o®s & o@a®y L o

A
IO PRCIN I Y ORI
-0
- B o) - 5 Q®r

+ 1 ngs)Q(g)d;
oo
3s—l "
- 5% Q,(‘le - & o @Mw
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Table

The Values of T as s Function of T

-0.127% + - Q.21 _ 0.83 4+ Q.45
0.12T 0.51 3 —Egé —;g-

~0.0288T% + 0.2688T° - 0.6024 + Q;%gﬁg + §¢%§§9

- B4.171 , 93.895 _ 97.978 , 34.992
78 T8 710 T

+0,0230T° - 0.2688T° + 0.8009T - 0.5779 4+ 2:2944 _ 59-%5&
T T3 T
+ 458,86 _ 1493.6 , 2357.1 _ 1763,6 , 503.88
77 79 71l 713 715

~0.0230T8 + 0.32267% - 1.44547% + 2.0095 + 1:1167

TR
. 70.286 , 1068.4 _ 7496.1 , 27817 _ 57015
pd 76 78 710 712
+ 84722 _ 38094 , 9069.9
14 =T 718

(0.027617 - 0.45151° + 2.550375 - 5.59547 + 3.4356T-1
~59,495T"% + 1672.47~5 - 2126377 + 147v2467~° - s982417-11
+12728857" %8 - 22114747718 & 1973284717 - 959960719
+1959107~21)

(-0.0387T8 + 0.7225T® - 4.9235T% + 14.5407% - o.26907
~17.522 + 3.75801" " -30.5721 % - 16.348T° + 1909.07~%
+22.512T-5 - 4166676 - 9.64807"7 + 48344978
-535005717 10 + 14632715718 _ 41337762014 4 761271687+

-80418589T~18 + 666128027-20 - 27s4s870T"2R + 49369397-24)
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APPENDIX III

PROOF OF A FUNDAMENTAL THEOREM ON SUPERSONIC FLOWS;

EVALUATION oF THE &E(®)

The following theorem was enunciated without proof in
section III: :

Lest
z}(V) = Vem + Q(E + ) V=0 (46)

wvhere ((¢) (Q is considered as continued for complex

values of the argumente)} is an analytic function of the

complex variable ¢, which function is supposed regular
for [g[ < A then, there existe @ set of functions

52, n=1,2, « « A = _Q%_ﬂ (49)

such that
V(€ ,n) = Vo(E ,n) + V(£ ,n) (50)

is a solution of (48) where

ValE,n)=£(E)+ ZE(n)(A)ffnJ(z)

n=1

(51)

Va(t,n) = g(n)+ZE(n)(A)g[‘ﬂ (n)

n=1
and

Ly = £(8) gled(n) = g(n)

4 Ul
e[+ (g) =f ell(e,at, gt (n) =f e 51 (ny)an,
0

°
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f =and g Dbeing two arditrary, twice differentiable func—
tione of § =and m, respeciively.

The following is & proof of this theorem. Substitute
(50) and (51) and (52) into (48) to obtain

Lg(n) v et >] [E<§>+Q<A>] . [gm(n) + sll(e >]

[Ef)mmmmm‘”(m] roe (s8Rl |

[

[E%?+1)+ E%334-Q(A)E(n>(A)} + ... =0 (124)

Thus, if the E(m), m=1,2,, . . are determined by the,
recurrence relation :

A .
1)(a) = —-/p Q(AyYah,
Al > (125)
g2 ay o _/ (n)(A1)+(2(A y2¢® (A, YA,
’..0 J

Then (50) will formally satisfy (48). The uniform con—
vergence of this series will be proved by the method of
dominants,

Lemma: Let ¢(X¢) be an analytic function of the com—

plex variable {, which is regular in the circle” |[{} < A ;
then,
ZMA . 2MA® h
IQ( §4 o ']& 'O'F i (126)
e 0<l<r,, t.e.,
a Q(§> 2n'M Ag 3(n+1)'MA 2 t real and ( )
AFT S 5%E 161 127
(A ‘l§’> IAO gl j positive
where
B = maxlf(§)| for l§l= Ao (128)

The precof of this leﬁma follows immediately from Cauchy's
formula
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a(t) = J/n Q(gl)dgl (129)
lﬁl‘ '
and the fact that
_énﬁ > 1 for ¢ real and (130)
A-C — positive

In the following £} will be considered only for reel
non—-negative values of §; that is, O will be taken as
a function of A3 0 < A< A;. This restriction on A will
be understood for the remainder of the proof unless the
contrary be stated.

Let
~ 2M4 2 .
= 0 131
ala) TPTRE (131)
Equations (126), (127) may then be writtem in the
form
]Q(A)] < a(a) (132)
ara(A) | a®a(a)
& = - i - (133)
dA dA

respectively. By defimition, if (132) and (133) hold,
is & donminant of 3, which fact will be symbolized by

Q>0 or << .

If i(l)(A) is given by

A _ :
501)(n) =/ G(A,)aA, (134)
4 ’
Then
A A .
E‘”(A)] - ]f Q(A,)aA, 5/ S(ALYah, < 30A)  (138)
J, J,

and also
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|gnE‘” < amE(2)n) (136)
oaa® |7 aAl
Thus .

5(1)(a)<< B0 2(0) (157)

Suppose, now, that

A
g(a+ad(p) =f [ﬁ}jmf) * 5<A>5<n><Al>} ah, + EP(a) (138)

o]

where

B e F(R) (139)

~(n)

0 << H (140)

Then, it follows imméediately thet

E(n+l)(A)!;§ 7+ (p) (141)

(142)

dE(n+1)(A)|< a5(2¥1)( )
apn ~ ah

and by considering the corresponding derivatives of

i%ﬁ) + ﬁi(n) in comparison with —(E&i) +£7E(n)) it fol-
lows that:

~(n+1)

g(0¥1) o %

(143)
which completes the proof by induction.
If, now, iln) is givea by

=
§(n) _ cnho M [ LI __]:..,] >> 0 (144)
A, Ao=A Ao
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vhere c¢, is some conveniently chosen positive constant
(to be determined,, ager). Then an explicit expression may

be obtained for E\RJ/(A),
A -. -
E(I)CA) =/ 5(A1)dA1 =!:___1_.-_... __1_J AoaM
»o .A.o - .A. A-Q
(145)
E(n)(A) “ oy [ 1 - ln]
_ {Ag = A) Ao
It is then seen thab '
ey = Ayt M (1486)

to obtein the recurrence relations holding between the Cp s
write

e b 2 M |
'ﬁ<n+l)(A) =f eq (n+1)u — + Ao - S
o (Ao =A)""%  (Ae—a)™% 7 -

a
_hem Mo ) g+ By (147)

t, - 1)%,%°

and employ (144), so that

[a(n+l)+ A, M]
nta - e (n+1)

(148)

2]

Note that
cp < M*(n+l) - (149)
where M* is some conveniently chosen congfant.
To complete the proof for the uniform convergence of
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V,(¢,n): £(¢t) 1e assumed to be a differentiable function
and therefore there exists a constant, say, Mg, such
that

2(8)| < Moy or JE] < t, (150)

then

< i, (151)

nt

f[n](g); 5 53£2 for lg

Consequently, from (51) 4t may be seen that

n
Tyt ,n)<< Mz[uzm ST 1 B C SO T '](.15?)
(Ao — A) iy — AP
which will converge if
H
1 153 )
Ay ~ A.< ‘

so that the series V,(f{,n) converges uniformly in the
domain (153), The same may be said for the sbdries

32V, /2td3n; hence the series for V,(f{,n) may be differen—
tiated termwise and therefore the formal solution (50) 1is
actually a solution of (48) in the domain (153).

The same also holds for Vz(f,n), but here the domain
(153) has to be replaced By

~_J1u__— < .1 ) (154)
’Ao - Al

Therefore V(f,n) represents a solution of (48) in the in—
tersection of (153&) -and (154)., (See fig. 10.) As has been
pointed out in section III, this theorem cannot be applied
directly to equation (47) as ¥F; given by (45) has a pole
for A = O. In some cases, however, it is possible to over—
come this difficulty by shifting the origin. Let a be a
positive number and '

E— aj2 |

n—~ a/?

g*
rr]*

i

(155)

g0 that A* will mean
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-t
Pigurs 10,
A* =A — = (156)
BEquation (47) then assusmes the form
Wesns * (¥ ,a*) W =0 (157)

where

W(E*,n")

]

s a * E)
V(L’, + 5, n* 43

Fo(A*) = F(A* + a)

(168)
so that Fg is analytic for A¥* = O.

The corresponding changes in B(2)(A) will be indi-
cated by writing E(n)(A), thus

A A
ml*)(p *) ]
*) = — | P(Ay)ahy =~ [ Fi(A)ahy = B (8)

° a

AR TS m]
B % F_E ahA
U/A.[ ATA* * ¥a : L (159)

fo) .

_/‘[_Fi(n) +3'1§(“)]cm1

E(n+l)(A*)

AA

(]
(n+1)
=3 (A)
67 ~
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The domain of convergence 1is merely shifted.

It is desirable to have expiicit formulas for the

§<n) and their derivatives, at these will be employed in

computation; i1f n is given the values n = 1,2,3,4, 1In
(159), then

A

E(l)<A) = —~/p Fl(Al)dAl (160)
“a
22 = pa(n) - Fala) + 2EAN? (161)

3F,(A) . dF,(a)

53)(a) = 5,000 8P -

A oA
A (1), . 1, (1)
-/n Fle(Al)dAl—-Fl(a)ﬁ ' (A)+-g(§(l (A))® (162)
Ea .
(3) (=)
(a) _ _RE (A 3B T(a) (1) (3)
4 ( = o Y+ E ) B
(2)
v ali)y B, Liz,2(0) = 713(a))
- SE PR s s P an® o
# 2 0E ) . (188)
where
3E,(A)
. - = ~F,(A) (164)
- aA- .
(=)
2F .(A) = 2%, (A) - Fl(A)E(l)(A) (165)
a."". aA
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25(30(8) (=) Frya) | _
——-SK——— =—F,(A)E (A)'-—E:XE"— o
SRISTEKTS.
_——tr ~ F,2%(A) (ge6)
2l -
28 NA) | L g ayp(e ) « EEa) | Pr)st i)
an = ah® ap8
¢ ®) 3F, (1) 2802 )(a
. dF, (A )E (A)4_ Fi(p) P (0)+ T, E'/(A) (167)
34 A 3 A

Explicit formules for some of these guantities as a func—
tion of B are given below; ¥,;(B) is defined in (45);
B(a) is the value of B corresponding to A = a.

E(l)(A) _ k+l [i =3 o 2% __ g1 (1-3%) B
16

3 (k+1) © (k1)
8 el B
- tan hB (168)
h{k+1)3(k-1) B(a)
dF,(A) -
STA oL (R [SO(k+1)B“7+48kB—5+2(6k—l4)B-3+2(Bk—l)B]
dA 128

(1€9)

« [(l+h232)(1+B2)]
B3(1-h?)
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A

‘/P F,23(A,)dA, = kil [— 25(k+1)% — 10K(x+1)B”"
. 1024 9

a

A

_ (39k°-80Kk-15) 5-

5 2( 112+ 48k%+59%k+20)
5

Z(k+1)

(901—70k-153k2+52k3+133k*—14k%—41%°)

(=+1)%(x—1)"

(1-3k)( 16+6k—12k3—2k>)

+
(E=1)7
B
k41 1—-%% ) ® 128 -
( )( x) B3 4+ £ ~  tan"* hé] © (170)
3( k—1) n(e+1)®(k—1)" B(a)
Remark'

Sometimes the range of variability of the speed is
pomparatlvely small. In these instances it is useful to

replace 4 by a constant, say ¥_ . Bquation (42) then
becomes

eV
———— + F V = 0
d€dn

and ite solutions can be written in the form

V(t,n) = f = [?“W /}} (f[ (1-e” (o]

. g[g_(l—t)]} | | ]
Fo (1—- ta)lfa _

where f and g

.are two arbitrary, twice continuously
differentiable functions of one variable.
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APPENDIX IV
CONVERGENCE OF THE SERIES OBTAINED AS SOLUTIONS OF (85)

.~ The convergence of the series (86) or (87), which have
been obtained as solutions of (85) may be demonstrated as
follows: :

Let
o2 = 3 (171)
ihe half plane Re(A) < O then corresponds to the circle
Z!< ln' . - .

Since-

au av agz 2n 4U au

—— IR e—— = 8 ZZ'——‘

an dz dAr dz dz

and - (172)
d®U  dz & ,4au a d auv a*y 4au
e = e (2N 2 262 (2 =2 = 4z<z =+ — {

dz dz

ar®  an az \aa az dz

the differential eouation (85) may be written in the form

a 2
280 L, 8, <F - EL) U (173)
az® 4z 4
2 ! | .
S3ince ¥ —-ﬁ— is a polynomial in g = e2d, the point
z = 0 1is a regular singular point of the differential equa—

tion (173)., See reference 14, where it is also shown (in
sec. 10.13) that the generel solution of (173) may be ex—
pressed in the following form, provided " p  is not an in—
teger. C

U = ¢;U; + cpUs (174)
where <¢; =and ¢z are arbiitrary constants and
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zv/a{l +

[>18

(=]
-
]

mnzf} ~ (178)

5]
i
=

v/e 2,
vo=2 " 1 Y anf} (176)
. L
n=1
where the onp, B are properly chosen constapts. Since
the only (finite) singular point of equation (173) is at
z2=0, the theory presented in reference 14, section 10.13,

shows that the series converges for all values of =z.

However, if v 1is an integer, as in the case under
consideration, the above—mentioned method faills; the ser—
ies (174) may be retained, but, es shown in section 10,15
of reference 14, the series (176) must be replaced by

2]

v-1 n—u —_—
Yoz Y., g—V
D
Up* = Ulf.zz —_— % YU log & + }: —£-——1 (177)
L n—yp n—v J
n=o n=p+1

where the Yv are properly chosen constants. Therefore,
in the case under conslideration, the general solution of
(178) valid for all 1z, will be of the form:

It is seen that, by replacing =z by ezk, (175) and

(177) will assume the forms given in (87); the factor A
in the first term of the second series of (87) arises from
the logarithmic term in (177).

Since the expansions (175) and (177) are valid for all
z, in particular for lzl < 1, the expansion (87) will be

valid for leaél < 1l; +that is, Re(A) < O,
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Table 1
T and T"* as functions of ez'\
<0 o0
rrr=) ae®anarl= b
n=0 n=0
then
n -an by
0] -1.0000 1.0000
1 0.2392 0.2392
2 0.1087 0.1659
3 0.0658 0.1315
4 0.0458 0.1108
5 0.0342 0.0968
6 0.0270 0.0865
7 0.0220 ' 0.0786
8 0.0185 0.0724
9 0.0158 0.0872
10 0.0138 0.0829
Table 2

The Coefficients of the Series Expansion

of F in Powers of ezn%

o)
F=o>_c.enh

n=0 =
Co = 0.0000
¢, = 0.0000
Cy = 0.1378
Cz = 0.2858
Cy = 0.4333
Cg = 0.6073
Cg = 0.7241
C, = 0.8678
Cqg = 1.011
Cg = 1.153
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Table 3

The corresponding velues of M, T, T, g/sgs A
for subsonic values of ¥

Table 3 (cont'd)

Com

M T T a /e, “A ¥ T T 4/3, -2
0.00 1.0000 0.0000 0.0000 t 00 0.75 0.6615 0.1011 0.7111 0.1171
0.05 0.9988 0.0006 0.0500 2.6262 | 0.76 0.6499 0.1036 0.7196 0.1093
0.10 0.9950 0.0020 0.1000 1.9876 | 0.77 0.6380 0.1060 0.7280 0.1018
0.15 0.9887 0.0045 0.1497 1.5864 || 0.78 0.6258 0.1085 0.7365 0.0944
0.20 0.9798 0.0073 0.1993 1.2548 | 0.79 0.6131 0.11%0 0.7448 0.0875
0.25 0.9683 0.0124 0.2485 1.0896 || ©.80 0.6000 0.1185 0.7532 0.0807
0.30 0.9539 0.0177 0.2973 0.8667 | 0.81 0.5664 0.1160 0.7616 0.0742
0.5 0.8368 0.0239 0.3458 0.7240 || o0.82 0.5724 0.1186 0.7699 0.0680
0.40 0.9165 0.0311 0.3988 0.8086 || 0.83 0.5578 0.1211 0.7718 0.0618
0.45 0.8930 0.0830 0.4416 0.5008 || 0.84 0.5426 0.1287 0.7864 0.0560
0.50 0.8660 0.0476 0.4880 0.4120 | 0.85 0.5268 0.1263 0.7945 0.0505
0.51 0.8602 0.0486 0.4972 0.3956 | 0.86 0.5103 0.1289 0.8087 0.0452
0.52 0.8542 0.0513 0.5065 0.37%8 | 0.87 0.4931 0.1815 0.8108 0.0402
0.53 0.8480 0.0582 0.5162 0.364¢ || 0.88 0.4750 0.1341 0.8189 0.0354
0.54 0.8417 0.0551 0.5249 0.5485 | 0.89 0.4560 0.1268 0.8269 0.0328
0.55 0.8352 0.0569 0.5836 0.3850 || 0.80 0.4359 0.1304 0.8349 0.0266
0.56 0.8285 0.0592 0.5432 0.8208 | 0.81 0.4146 0.1421 0.8429 0.0225
0.57 0.8£16 0.0610 0.5524 0.8071 | 0.82 0.3318 0.1448 0.8507 0.0188
0.58 0.8146 0.0680 0.5614 0.2988 | 0.88 0.3676 0.1475 0.8587 0.0153
0.59 0.8074 0.0651 0.5705 0.2808 | 0.94 0.3412 0.1502 0.8666 0.0120
0.60 0.8000 0.0672 0.5795 0.g662 | 0.95 0.8128 0.1530 0.8744 0.009].
0.61 0.7924 0.0693 0.5685 0.8560 | 0.9 0.2800 0.1566 0.8821 0.0065
0.82 0.7846 0.0714 0.5975 0.2440 | 0.97 0.24%1 0.1584 0.8892 0.0042
0.83 0.7768 0.0785 0.6064 0.2825 ) 0.98 0.1580 0.1611 0.8976 0.0023
0.64 0.7684 0.0757 0.6158 0.2212 | 0.99 0.1411 0.1639 0.9053 0.0008

1.00 0.0000 0.1667 0.9129 0.0000
0.65 0.7599 0.0779 0.6242 0.2098
0.66 0.7513 0.0801 0.6330 0.1996
0.67 0.7423 0.0824 0.6418 0.1892
0.68 0.7332 0.0847 0.8508 0.1793
0.69 0.7288 0.0870 0.6593 0.1696
0.70 0.7141 0.0893 0.6680 0.1600
0.71 0.7042 0.0918 0.676 0.1610
0.72 0.6940 0.0989 0.6854 0.1421
0.73 06835 0.0963 0.6939 0.1348
0.74 0.8726 0.0987 0.7025 0.1252

"ORK NI VOVK
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Table 4

The corresponding values of M, B, T, @/a,, A4

L

"ON HI VOVK

980T

for supsrsonic values of M Teble 4 (cont'd)

| B 7 q/8, A 9/a, M B T A
1.00 0.0000 0.1667 0.9129 0.0000 || 1.00 1.1180 0.5000 0,2000 0.0360
1.01 0.1418 0.1895 0.9205 0.0008 | 1.05 1.1802 0.8437 0.2205 0.0677
1.02 0.2010 0.1722 0,9280 0.0020 | 1.10 1.2685 0.7728 0.2420 0.1058
1.0% 0.2468 0.1750 0.9355 0.0039 || 1.15 1,3409 0.8934 0.2645 0.1483
1.04 0.2857 0.1770 0.8430 0.008L || 1.20 1.4221 1.0112 0.2880 0.1945
1,05 0.3202 0.1807 0.9504 0.0085 | 1.25 1.5076 1.1288 0.3150 0.2440
1.08 0.3618 0.1835 0,9578 0,0110 | 1.30 1.5978 1.2462 0.3380 0.2965
1.07 0.380%7 0.1863 0.9652 0.0140 | 1.36 1.6935 1.3687 0.3646 0.3518
1.08 0.4079 0.1892 0.9725 0.0169 f 1.40 1.7966 1.4812 0.3920 0.4100
1.09 0.4337 0.1980 0.9758 0.0200 || 1.45 1.5043 1.6211 0.4205 0.4709
1.10 0.4583 0.1949 0.9870 0.0236 | 1.50 £2.0228 1,7581 0.4500 0.5345
1.11 0,4818 0.1877 0,9941 0.0268 | 1.56 £.1505 1.8038 0.4805 0.3556
1.12 0.5044 0.2008 1.0014 0,0204 [ 1.80 2,2904 2.0608 0.5120 0.6707
1.18 0.5262 0.2054 1.0086 0.0328 | 1.85 2,4448 2,2809 0.5445 0.7436
1.14 0.5474 0.2063 1.0158 0.0878 § 1.70 2.6170 2.4184 0.5780 0.8201
1.15 0.5679 0.2092 1.0226 0.0415 | 1.75 2.8113 2.6274 0.8125 0.9006
1.186 0.5878 0.2120 1,0897 0.0466 ! 1.80 %, 0339 2.8644 0.8480 0.98566
1.17 0.8074 0.2149 1.0367 0.04%4 | 1.88 3.20856 3,138 0.6645 1.0759
1.18 0.6264 0.2178 1.0436 0.0535 | 1.90 3.6035 %.3620 0.7220 1.1440
1.18 0.6451 0.2207 1.0505 0.0577 f 1.9 3,0846 3.8570 0.7605 1.2768
1.20 0.8653 0.2286 1.0574 0.0618 | 2.00 4.4721 4.3589 0.8000 1.3908
1,25 0.7500 0.2381 1.0911 0.0845 | 2.06 5,1330 5,0347 0.8¢06 1.5180
1.30 0.8307 0.2526 1.1238 a.1076 | 2.10 6.1133 8.0310 0,8820 1..6634
1.35 0.9068 0.267L 1.1657 | 0,1818 | 2.1 7.8247 7.7606 0.9845 1.8401
1.40 0.9798 0.2818 1.1866 0.1667 | 2.20 12,2984 12.2577 0.8680 2.0626
1.45 1.0500 0.2500 1.2166 o.2819 | 5 00 o 1.0000 oo
1.50 1.1180 0.23104 1.2457 0.2078

1.55 1.1848 0.3257 1.2739 0.2382

1.80 1.2490 0.3386 1.3012 0,2590

1.65 1.3124 0.3525 1.8277 0.2779

1.70 1.3748 0.8663 1,3533. 0.3108

1.75 1.4361 0.5798 1.3781 0.8375

1.80 1.,4967 0.3932 1.4021 0.3618

1.85 1.6664 0.4064 1.4854 0,3859




NACA TN No. 1096
Table 5

Muxiliary Functions for Computation of Q(n)

T M F F, )=0F2 dA %%—
As~o0
0.00| 1.0000 - 0 + 00 + 00 0.0000
0.05( 0.9998 —9.5664x107 | 1.6676x10'% | s.1489x10%% | -0,0021
0.10| 0.9950 -1.4791x108 | 3.1723x10° | 1.s661x10%0 | -0.0084
0.15| 0.9887 -1.2751x105 | 8.0345x107 | 3.9617x108 | -0.0193
0.20| ©0.9798 ~2.2100x104 | 5.8077x108 | 2.8547x107 | -0.0350
0.25| 0.9682 -5.5969x103 | 7.4153x105 3.6210x106 ~0.0561
0.30| 0.9539 ~1.7922x10° | 1.3497x10° | e.5149x10° | -0.0837
0.35| 0.9368 -6.7198x10° | 3.1214x10% 1.4797x10° ~0.1188
0.40| 0.9135 -2.8144x10° | 8.5565x10° 3,9545x10% ~0.1631
0.45| 0.8951 ~1.2759x10% | 2.6553x10° 1.1903x10% -0.,2190
0.50| 0.8660 ~6.1200x10 9.0295x102 5.9424x10% -0,2899
0.65| 0.8352 -3.,0505x10 3.2815x102 1.4400x103 -0, 3806
0.60| 0.8000 -1.5558x10 1.2482x10° 6.0366x10° -0.4987
0.65| 0.7599 ~7.9987 4.8769x10 3.1252x10° | -0.6559
0.70| 0.7141 -4,0789 1.9195x10 2.0784x102 -0.8719
0.75 | 0.8615 -2.0215 7.4569 1.6904x10%° -1.1823
0.80 | 0.6000 -0,9453 2.7472 1.5557x10% | -1.e584
0.85 | 0.5267 ~0.3964 1.1827 1.4562x102 | -2.4667
0.90 | 0.4358 ~0.1336 0.2477 1.4089x102 | -4,1071
0.95 | 0.3120 ~0.,0257 0.0383 1.3687%10% | -9.0795
1.00 | 0.0000 +0.0000 0.0000 1.3150x10% - @O
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NACA TN No. 1096

Table 6

The values of &f _ and £[0] (57*), n=20, 1, 2, 3, 4,

g+

7 %fj—_* £(g*) | 108 [l | (@ £[3 £[4]
0.0000 | 20.0000 | 1.0000 |0.00000 |0.0000 |0.0000 | 0.0000
0.0025 | 20.5000 | 1.0506 |0.00256 | 0.0003 |0.0000 | 0.0000
0.0050 | 21.0000 | 1.1025 |0.00525 | 0.0012 |0.0000 | 0.0000
0.0100 | 22.0000 |1.2100 |0.01103 | 0.0053 |0,0002 | 0.0000
0.0150 | 23.0000 |1.3285 |0.01736 | 0.0124 |0.0006 | 0.0Q00
0.0200 | 24.0000 |1.4400 |0.02426 |0.0228 |0.0015 | 0.0000
0.0300 | 26.0000 | 1.6900 |0.03990 | 0.0546 {0.0052 | 0.0003
0.0400 | 28.0000 | 1.9600 |0.05813 |0.1034 |0.0129 | 0.0012
0.0500 | 30.0000 | £.2500 |0.07917 | 0.1718 |0.0265 | 0.0031
0.0600 | 32.0000 | 2.5600 |0.10320 |0.2628 |[0.048L | 0.0068
0.0700 | 34.0000 | 2.8900 |0.13043 |0.3793 |[0.0799 | 0.0131
0.0800 | 36.0000 | 3.2400 |0.16107 |0.5248 |0.1249 | 0.0232
0.0900 | 38.0000 | 3.6100 | 0.19530 | 0.7026 |0.1852 | 0.0386
0.1000 | 40.0000 | 4.0000 | 0.23333 | 0.9166 |0.2666 | 0.0611
0.1100 | 42.0000 | 4.4100 |0.27537 |0.1170 |0.3706 | 0.0927
0.1200 | 44.0000 | 4.8400 | 0.32160 |0.1468 |0.5022 | 0.1361
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NACA TN No. 1096
Table 7
The Values of éfr” n=1,2,3,4
- 5 . ) | g@ | g® | @
0.0000 |1.0000 |1.0000 0.0000 0.0000 | 0.0000 0.0000
0.0025 |1.0040 |0.8970 | -0.0007 | -0.0180 |-0.1700 | -2.5000
0.0050 |1.0080 |{0.9940 | -0.0012 | -0.0360 |-0.3300 | -4.8000
0.0075 |1.0118 |0.9910 | -0.0016 | -0.0530 |-0.4800 | -6.8000
0.0100 |1.0156 |0.9880 | -0.0019 | -0.0700 |-0.6200 | -8.8000
0.0150 |1.0280 |0.9825 | -0.0027 | -0.1000 |-0.8700 |-11.6500
0.0200 |1.0300 |0.9757 | -0.0032 | -0.1290 |-1.1300 |-14.7500
0.0250 |1.0365 | 0.9700 | -0.00%6 | -0.1560 |-1.4000 |-17.6600
0.0%300 |1.0427 |0.9650 | -0.0040 | -0.1880 |-1.6700 |[-20.6000
0.0400 |1.0560 |0.9545 | -0.0047 | -0.2400 |-2.1100 |-25.2000
0.0600 |1.0890 | 0.9440 | -0.0042 | -0.2910 |-2.4700 |-29.2700
0.0600 |1.0813 |0.9325 | -0.0037 | -0.3300 |-2.7900 |-33.1000
0.0700 .|1.0945 | 0.9210 | -0.0023 | -0.3710 |-3.1500 |-36.4000
0.0800 |1.1075 |0.9115 | -0.0010 | -0.4090 |-3.4500 |-39.4500
0.0900 |1.1210 |0.9010 | +0.0007 | -0.4430 |-3.7000 |-42.1600
"lo.1000 |1.1335 | 0.8915 0.0028 | -0.4740 |-3.9400 |-44.1900
0.1100 |1.1487 | 0.8825 0.0053 | -0.5080 |-4.1200 |-46.1000
0.1200 |1.1610 | 0.8735 0.0080 | ~0.5310 |-4.3000 |-48.0000
0.1300 | 1.1735 | 0.8842 0.0110 | -0.5570 |-4.4630 |-49.5000
0.1400 |1.1850 | 0.8554 0.0143 | -0.5840 |-4.6150 [-50.8000
0.1500 |1.1972 | 0.8476 0.0181 | -0.6100 |-4.7500 |-52.0300
0.1600 |1.2110 | 0.8390 0.0219 | -0.8310 |-4.9000 |-53.0500
0.1700 | 1.2235 | 0.8295 0.0260 | -0.6500 |-5.0200 |-54.0000
0.1800 | 1.2388 | 0.8208 0.0300 | -0.6700 |-5.1400 |-54.9000
0.1900 | 1.2496 | 0.8120 0.03249 | -0.6880 |-5.2450 |-55.7200
0.2000 | 1.2615 | 0.8040 0.0398 | ~0.7060 |-5.3370 |-56.6200
0.2100 | 1.2732 | 0.7960 0.0443 | -0.7250 |-5.4200 |-57.4000
0.2200 |1.2856 | 0.7885 0.0493 | ~0.7420 |-5.5100 |-58.0800
0.2300 |1.2980 | 0.7810 0.0547 | -0.7560 |-5.5950 |-58.5500
0.2400 |1.3117 | 0.7740 0.0803 | -0.7710 |-5.6720 |-59.0000
0.2500 | 1.3255 | 0.7664 0.06868 | -0.7860 [-5.7400 |-59.4500
0.2600 | 1.3370 | 0.7585 0. o727 | -0.8000 |-5.8050 |-59.8500
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NACA TN No. 1096
Table 8
% * 2A# o=(3*-) | g Yo LX 3.
5 K 2 5T 8% =const.|d q)’/'=const.
0.0025 | 0.0000 | 0.0025 |0.00125 |0.3765 |40.3770 |+153.2134 | C.1915
0.0025 0.0050 OIW 0.0000 40.7513 1-55'89w 0.0000
L] L ] - * 0' 88 [ 3 1 [ ] OI
0.0050 | 9.0000 | 9-0050 | 9-00230 |9:7488 |49:1232 | 123:74%8 | 8:18%
0.0050 | 0.0100 | 0.00000 |0.0000 [41.4911 161.1307 | 0.0000
0.0100 | O. 0.0100 | 0.00500 |1.4801 4910 160.92 0.8046
0.0050 | 0.0150 | 0.00250 |0.7317 i%.é g7 12%.2935 o.41éo
0.0100 | 0.0200 | 0.00000 |0.0000 |42.9203 171.4925 | 0.0000
0.0150 { 0.0000 | 0.0150 | 0.00750 |2.1950 {42.2395 165.9949 | 1.2449
0.0050 | 0,0200 | 0.00500 |1.4447 [42.9202 171.2956 | 0.8564
0.0100 | 0.0250 | 0.00250 |0.7138 |43.6366 176.5320 | 0.4413
0.0150 | 0.0300 | 0.00000 |0.0000 |44.3730 181.7387 | 0.,0000
0.0200 | 0.0000 | 0.0200 | 0.01000 |2.8893 [42.9198 170.7048 | 1.7071
0.0050 | 0.0250 | 0.00750 |2.1415 |43.6363 176.1484 | 1.3211
0.0100 | 0.0300 | 0.00500 |1.4116 |44.3728 181.5518 | 0.9077
0.0200 | 0.0400 | 0.00000 |0.0000 |45.7909 192.4503 | 0.0000
0.0300 | 0.0000 | 0.0300 | 0.01500 |A4.2344 |44.3713 180.0566 | 2.7010
0.0100 | 0.0400 | 0.01000 |R2.7592 |45.7899 191.7377 | 1.9174
0.0200 | 0.0500 | 0.00500 |1.3483 |47.1679 203.1159 | 1.0155
0.0300 | 0.0600 | 0.,00000 |0.0000 |48.4506 213,7738 | 0.0000
0.0400 | 0.0100 | 0.0500 | 0.01500 | A4.0446 |47.1655 201.7565 | 3.0264
0.0200 | 0.0600 | 0.01000 |2.6317 |48.4491 213.1260 | 2.1313
0.0300 | 0.0700 | 0.00500 |1.2846 |49.6875 224.6336 | 1.1231
0.0400 | 0.0800 | 0.00000 |0.0000 |50.9896 236.4134 | 0.0000
0.0600 | 0.0300 | 0.0900 | 0.01500 |3.6830 {52.1909 246.9304 | 3.7041
0.0400 | 0.1000 | 0.01000 |2.4008 [53.4178 259.4997 | 2.5951
0.0500 | ©.1100 | 0.00500 |1.1746 |54.6372 272.4613 | 1.3623
0.0600 | 0.1200 | 0.0000Q0 |0.0000 |{55.8202 285.9281 | 0.0000
0.0800 | 0.0500 | 0.1300 | 0.01500 |3.3715 |56.9404 297.3904 | 4.4630
0.0600 | 0.1400 | 0.01000 |2.1978 |58.0675 310.1456 | 3.1016
0.0700 | 0.1500 | 0.00500 |1.0759 |59.2298 324.0247 | 1.6201
0.0800 | 0.1600 | 0.00000 |0.0000 |60.3022 338.3378 | 0.0000
0.1000 | 0.0800 | 0.1800 | 0.01000 |{2.0111 |62.2637 365.5425 | 3.6556
0.0900 | 0.1900 | 0.00500 |0.9830 |63.2227 380.0431 | 1.9002
0.1000 | 0.2000 | 0.00000 |{0.0000 |64.2081 394.3472 | 0.0000
0.1100 | 0.0900 | 0.2000 | 0.01000 |1.9229 |64.2037 393.9469 | 3.9396
0.1000 | 0.2100 | 0.00500 |0.9401 |65.1558 408.4695 | 2.0423
0.1100 | 0.2200 | 0.00000 |0.0000 |66.1189 423.7961 | 0.0000
0.1200 | 0.1000 | 0.2200 | 0.01000 |[1.8391 |66.1141 A23.4159 | 4.2343
0.1100 | 0.2300 | 0.00500 |0.8996 |67.0534 439.1157 | 2.1956
0.1200 | 0.2400 | 0.00000 | 0.0000 |68.0051 456.3483 | 0.0000
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Table 9
The Values of Ml’ Mz, MS’ M4
* * 2% = M M M
3 Y e 1 R My 4
0.0025 0.0000 0.0025 20.4992 1~0.0005 ] 0.0000 -19,.9993
0.0025 0.00560 20,4886 |~0.0005| 0.0005 -20,4986
04 0050 0.0000 0.0050 20,9984 |-0,0011 ] 0.0000 -19,9988
0.0025 0.0075 20,9979 | -0.0010 | 0.0004 -20.4981
0.0050 0.0100 20.9975 -0.,0008 | 0.0009 -20.9975
0.0100 0.0000 0.0100 21.9968 |{~-0.0021 | 0.0000 -19.9981
0.0050 0.0150 21,9865 | ~0.0018 1 0.0007 -20,9064
0.0100 0.0200 21.9948 | -0,0014 | 0.0014 ~-21.9846
0.0150 0.0000 0.0150 22.9945 | -0.0081] 0,0000 -19,8973
0.005B0 0.0200 22,9983 | -0.0025] 0,0006 -20.9957
©.,0100 0.0250 22,8923 | -0.0020¢ 0.0011 ~21.9938
0.0150 0.0300 22.9812 | ~-0.0015| 0.001B ~22,9912
0.0200 0.0000 0.0200 23.9819 | ~-0.0039 O;OOOO ~19.9868
0.0050 0.0250 25.9906 | -0,0031 | 0.0004 -20.9951
00,0100 0.0300 23.98982 | ~-0.0024 | 0.0008 -~21,98929
0.0200 0.0400 23.9868 | -0,0011 ] 0.0011 -2%3,9868
0.0300 0.0000 0.0300 25.9847 | -0.0051 ] 0.0000 ~19.9960
0.0100 0.0400 25.9811 | -0.0029 | 0.0002 -21.9915
0.0200 0.0500 25.9797 | ~0.0008 |-0,0Q00 -238.9862
0.0300 0.0800 25,9788 | +0.00092 {-0.0009 -25,9788
0.0400 0.0100 0.0500 27.9719 | -0.0025 {~-0.0002 -21.99156
0.0200 0.0800 £7.9702 | +0.0001 [~-0.0010 ~23.9859
0.0300 0.0700 27,9701 | +0,.0080|-0,0028 -25.9793
0.0400 90,0800 27.9701 | +0.0088 {~-0.0056 -27.9701
0.0600 0.0300 0.0900 31,8443 | +0.0108|-0.0061 -25.9812
0.0400 0.1000 31.9457 | +0.0147 |-0.0100 -27.9732
0.0500 0.1100 31.9483 | +0,0185|-0.0153 ~29.9635
0.0600 0.1200 31.9520 | +0,0215(--0,02156 ~31,9520
0.0800 0.0500 0.1300 35.9163 | +0.0356 |~0.,0204 -29,9716
00,0600 0,1400 36,9217 | +0.04051-0,0284 ~-31.961%7
0.0700 0.1500 38,9289 | +0.04541-0,.0382 -33.9505
0.0800 0.1600 35,9369 | +0.049¢|~-0.0499 -35.9369
0.1000 0.0800 0.1800 39.9019 {0.0794 |-0.0B78 -35.9554
0.0800 0.1900 %9.9161 [{0.0858 |-0.0731 -37.9444
0.1000 0.2000 39.9304 | 0.0907 |-0.0807 -39,9304
0.1100 0.0900 0.R2000 41.8976 | 0.1048 [-0.0775 -37.9578
0.1000 0.2100 41.9109 | 0.1114 |-0.0962 -39,9430
0.1100 0.2200 41,9270 | 0.1169 |-0.1189 -41,98270
0.1200 0.1000 0.2200 43.8898 | 0.1342 {-0.1007 -39,9580
0.1100 0.28300 43.9100 { 0.1407 }-0.1223 ~41,9458
Q.1200 0.2400 43,9309 | 0,1472 |-0.1472 ~43,.9309
83
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Table 10
The Values of Vl, V2, V,;L* HY
3* 3 2A% = v v v
? '7 5-% + 77* 1 2 yl*
0.0025 | 0.0000 | 0.,0025 | 1.0508 -1.0000 | 0.05086 0.0504
0.0025 | 0.0050 | 0.000C 0.0000 | 0.0000 | 0.0000
0.0050 | 0.0000 | 0.0050 1.1024 |-0.0000 | 0.1024 | 0.1018
0.0025 | 0.0075 | 1.1024 |-1.0506 | 0.0518 0.0514
0.0050 | 0.0100 | 0.0000 0.0000 | 0.0000 | 0.0000
0.0100 | ©0.0000 | 0.0100 | 1.2089 |{-1.0000 | 0.2099 | 0.2074
0.0050 [ 0.0150 | 1.2099 |{-1.1024 | 0.1074 | 0.1056
0.0100 | 0.0200 | 0.0000 0.0000 | 0.0000 ¢} 0,0000
0.0150 | 0.0000 | 0.0150 | 1.3224 | -1.0000 | 0.3224 | 0.3168
0.0050 | 0.0200 | 1.3224 |-1.1024 | 0.2199 | 0.2146
0.0100 | Q.0250 | 1.3224 |-1.2099 | 0.1124 | 0.1091
0.0150 | 0.0300 | 0.0000 0.0000 | 0,0000 | 0.0000
0.0200 | 0.0000 | 0.0200 | 1.4398 |-1.0000 | 0.4398 | 0.4292
0.0050 | 0.0250 | 1.4398 |{-1.1024 | 0.3373 | 0.3272
0.0100 | 0.0300 | 1.4398 |-1.20989 | 0.2299 | 0.2R18
0.0200 | 0.0400 | 0.0000 0.0000 | 0.0000 | 0.000Q
0.0300 | 0.0000 | 0.0300 | 1.8887 -1.0000 | 0.6897 0.6655
0.0100 | 0.0400 | 1.8896 -1.2098 | 0.4797 0.4579
0.0200 | 0.0500 | 1.6896 |-1.4398 | 0.2498 | 0.2358
0.0300 | 0.0800 | 0.0000 0.0000 | 0.0000 | 0.0000
0.0400 | 0.0100 | 0.0500 | 1.9594 |-1.2099 | 0.7494 | 0.7075
0.0200 | 0.0800 | 1.9594 | -1,4398 | 0.5195 | 0.4845
0.0300 | G.07"00 | 1.9594 |-1.6896 | 0.2697 | Q.2484
0.0400 | 0.0800 | 0.0000 0.0000 | 0.0000 | 0.0000
0.080Q | 0.0300 | 0.0900 | 2.55687 -1,6897 0.8689 | 0.7829
0.0400 | 0.1000 | 2.5588 |-1.9596 | 0.H992 0.5341
0.0500 | 0.1100 | 2.5589 | -2.2494 | 0.3095 | 0.2731
0.0800 | 0.1200 | 0.0Q000 0.0000 | 0.0000 | 0.0000
0.0800 | 0.0500 | 0.1300 | 3.2381 | -2,2497 0.9883 | 0.8541
0.06800 | 0.1400 | 3.2885 |-2.5596 | 0.68788 | 0.5806
0.0700 | 0.1500 | 3.2390 -2.8895 | 0.3494 | 0,2961
0.0800 | 0.1600 | 0.0000 0.0000 | 0.0000 | 0,0000
0.1000 | 0.0800 | 0.1800 | 3.9991 | -3.2405 0.7586 0.6226
0.0900 | 0.1200 | 4.0001 | ~3.6107 0.3893 | 0.3161
0.1000 | 0.2000 | 0.0000 0.0000 | 0.0000 | 0.0000
0.1100 | 0.0900 | 0.2000 | 4.4101 -3.6116 | 0.7985 0.6420
0.1000 | 0.2100 | 4.4111 -4,0018 | 0.4092 | 0.3257
0.1100 | 0.2200 | 0.0000 0.0000 | 0.0000 | 0.0000
0.1200 { 0.1000 | 0.2200 | 4.8413 | -4.0028 | 0.8385 0.6611
0.1100 | 0.2300 | 4.8428 ~-4.4135 | 0.4292 0.3352
0.1200 0.2400 0.0000 0.0000 0.0000 0.0000
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Table 11

Btreamlines of the Supersonic Flow (53) in the Physical Plane

Note that x and y are given only up to a multiplicative
constant and that the flow is symmetric with respect to the

x-axis.
¥, = 0.0 ¥, = 0.1 %, = 0.2
X1y ' x| vy X |y
4.30 0.00 4,18 0.45 4.03 0.90
8.40 0.00 8.54 0.48 8.19 0.92
13.44 0.00 18.78 0.47 13,21 0.94
19,60 0.00 12,58 0.48 19.03 0.96
26 .36 0.00 28.70 0.49 25,01 0.98
34 .44 0.00 84.70 0.50 33.81 0.99
— =
ﬁl_ = 0.3 %(_ -— 0.4
X v X y

4,11 1,37 4.00 1.82

8.39 1.39 8,12 1.86

13.39 1.42 13.12 1.80

19.29 1.48 18.74 1.94

26.09 1.49 25.68 1.98

33.79 1.53 3%.18 2.03

X Yy X y

4,08 2.27 4,28 2.72

8.32 2.32 8.42 2.78

13.28 2.37 15.42 2.86

20.16 2.42 19.16 2.89

26.40 2.48 25.96 2.96

34.80 2.54 34,12 3.02
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Diagram II.~ Streamlines of the supersonic flow (53).1n the physical plane.
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